

Development and Commissioning of the Highly Granular Scintillator-based Calorimeters of CEPC

Hongbin Diao University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

On behalf of CEPC Calorimeter working group

CEPC brief introduction and particle flow algorithm

- Circular Electron Positron Collider(CEPC)
 - Future lepton collider as Higgs/W/Z factories
 - Precision measurements of the Higgs/EW/QCD
 - ➤ Calorimetry requirement: 3-4% boson mass resolution for W/Z hadronic decays \rightarrow 30%/ \sqrt{E} jet resolution
- Particle flow algorithm(PFA)
 - Use optimal sub-detectors to measure energy/momentum of secondary particles in a jet
 - \square ~60% E_{jet} : charged particles measured by tracker
 - \square ~30% E_{jet} : photons measured by ECAL
 - $\square \sim 10\% E_{jet}$: neutral hadrons measured by HCAL
 - ➤ Separation of close-by particles in jet → high granularity calorimeters
 - This talk focus on following high-granularity calorimeters
 - Scintillator-tungsten ECAL prototype
 - Scintillator-steel AHCAL prototype

Scintillator-tungsten ECAL prototype(ScW-ECAL)

Plastic scintillator strips with ESR film on PCB board

Aluminium frame

- ScW-ECAL technological prototype
 - Plastic scintillator strips(45×5×2 mm³) + WCu(85:15) absorber + Hamamatsu S12571-010, S12571-015 SiPMs
 - > Sensitive area : $22x22 \ cm^2$, 32 layers in longitudinal dimension(~22.4 X_0)
 - > Orthogonal placement of two adjacent layers for almost $5x5 mm^2$ granularity
 - ➢ 6920 channels, 192 SPIROC2E electronics chips, ~350kg

Scintillator-steel AHCAL prototype

AHCAL technological prototype

- AHCAL technological prototype
 - Plastic scintillator tiles (40×40×3 mm³) + steel absorber plates + Hamamatsu S14160-1315PS and NDL 22-15 SiPMs
 - > Sensitive area : 72x72 cm^2 , 40 layers in longitudinal dimension (~4.6 λ_I)
 - > 12960 channels, 360 SPIROC2E chips, ~5 ton

AHCAL basic unit design

PCB, 2.5 mm

Scintillator, 3.5 mm

2024-10-23

CERN beamtests in 2022-2023

Supporting table for alignment of ECAL and AHCAL transverse sensitive area and adjustment of beam position

Beamtest @PS T9

Data taking overview

- Decent statistics of beamtest data samples (~63M events in total)
 - Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 100/120 GeV (H2);
 - Electrons/positrons: 0.5 5 GeV at PS; 10 250 GeV at SPS;
 - ➢ Pions: 1 15 GeV at PS, 10 120 GeV (also 150 350 GeV) at SPS

Pedestal calibration

- Pedestal acquisition
 - Multi-peaks pedestal distribution due to crosstalk
 - Channel-level pedestal from force-trigger mode file
- Stable pedestal during beamtest
 - Pedestal mean : 280~550 ADC for both ECAL and AHCAL pedestal sigma : 1~6 ADC for both ECAL and AHCAL
 - > 0~2 ADC fluctuation in both SPS and PS TB

Pedestal changes when beamtest condition changes

ASIC chip gain calibration

- Large dynamic range: high-gain/low-gain mode on SPIROC2E
- SPIROC2E chip gain: high-gain/low-gain ratio calibration
 - Datasets selection: e- for ECAL, pi- for AHCAL
 - Linear fit range limits: ECAL(300, max-600), HCAL(200, max-500)
 - SPIROC2E chip gain: high-low gain ratio 30~40
- Dead channel monitor
 - ECAL: 64 dead channels, less than 3%
 - AHCAL: less than 10 dead channels

AHCAL: ASIC gain overview

MIP calibration

- 100GeV muon file as datasets with position scan
- Track fit to exclude the dark noise
- Landau convoluted gaussian function
- MIP calibration monitor
 - ECAL: 68.9% channels calibrated successfully
 - > AHCAL: 93.3% channels calibrated successfully

中国科学技术

University of Science and Technology of China

AHCAL: MIP spectrum of 15um-SiPM Hamamatsu channel

SiPM gain calibration

- SiPM gain calibration for MC digitization
 - Multiple APD pixels operating in Geiger mode
 - SiPM response non-linearity correction

 $N_{fired} = N_{pixel} \cdot (1 - e^{-\frac{N_{seed}}{N_{pixel}}})$, $N_{seed} = N_{photon} \times PDE$

- SiPM gain calibration: LED data during TB
 - Single photoelectron spectrum with multigaussian peaks
 - $\square Peak number \rightarrow photoelectron number$
 - $\square \text{ Peak interval} \rightarrow \text{SiPM gain}$
 - Linear fit of the peak position: SiPM gain determined by slope

AHCAL: Peak position linear fit

Simulation and digitization

- Geant4 simulation: standalone ScW-ECAL and AHCAL prototypes' geometry
- Digitization: Improvement on consistency of MC/data
 - \blacktriangleright Energy deposition in Geant4 \rightarrow ADC counts in electronics
 - Scintillation process: Energy deposition → photon number (SiPM gain, MIP MPV)
 - □ SiPM response: Photon number → fired pixel number (sampling model to do SiPM saturation correction)
 - \blacksquare Electronics: fired pixel number \rightarrow ADC counts (Pedestal , ASIC chip gain)

中国科学

University of Science and Technology of China

中国科学技 University of Science and Technology of China

Beam Energy(GeV)

AHCAL response data/MC comparison

<u>×1</u>0³

MC truth

- MC diai

250

data

1.8

1.6

1.4+

.2

0.8 0.6

0.4

0.2

200

Event Number

- Beam purity study: fractal dimension(FD) and • Artificial Neural Network (ANN)
- AHCAL prototype data/MC comparison ۲
 - Event selection applied on data file analysis
 - MIP spectrum data/MC crosscheck: slight difference \geq
 - \geq Electron datasets (1-50GeV) :~10% discrepancy

AHCAL performance preliminary results

- Pion datasets: 10-80GeV with event selection
 - > Energy linearity is within $\pm 1.5\%$ (expected 3%)
 - Energy resolution: $\frac{56.2\%}{\sqrt{E(GeV)}} \oplus \frac{2.9\%}{2.9\%}$ (expected $\frac{60\%}{\sqrt{E(GeV)}} \oplus \frac{3\%}{2.9\%}$) \triangleright

80

Summary and prospects

- High granularity calorimeter is the baseline option of CEPC
- Development of Scintillator-based tungsten ECAL and steel AHCAL prototype
- Successful beamtests campaigns at CERN SPS/PS during 2022-2023
 > Huge amount data samples cover wide energy range including various particle species
- Preliminary analysis results of calorimeters
 - Fundamental parameters calibration and stability check
 - > Optimization of prototype simulation and digitization for validation between data/MC samples
 - > Calorimeters performance analysis: AHCAL performance reach the design requirements
- Future
 - Ongoing analysis activities
 - □ ScW-ECAL prototype performance study
 - □ Improvement on data/MC consistency
 - ECAL and AHCAL combined analysis
 - □ PFA performance study

Summary and prospects

- High granularity calorimeter is the baseline option of CEPC
- Development of Scintillator-based tungsten ECAL and steel AHCAL prototype
- Successful beamtests campaigns at CERN SPS/PS during 2022-2023
 > Huge amount data samples cover wide energy range including various particle species
- Preliminary analysis results of calorimeters
 - Fundamental parameters calibration and stability check
 - > Optimization of prototype simulation and digitization for validation between data/MC samples
 - > Calorimeters performance analysis: AHCAL performance reach the design requirements
- Future
 - Ongoing analysis activities
 - □ ScW-ECAL prototype performance study
 - □ Improvement on data/MC consistency: SiPM/ASIC non-linearity
 - ECAL and AHCAL combined analysis
 - □ PFA performance study

Backup

ECAL SiPM

关键参数	S12571-010P	S12571-015P	
灵敏面积	$1 mm \times 1 mm$	$1 \ mm imes 1 \ mm$	
封装尺寸	$1.9\ mm imes 2.4\ mm$	$1.9\ mm \times 2.4\ mm$	
像素数量	10000	4489	
像素尺寸	$10 \ um$	$15 \ um$	
增益	1.35×10^{5}	2.3×10^5	
最灵敏波长	$470 \ nm$	$460 \ nm$	
光探测效率	10~%	25~%	
暗计数	$100 \ kHz$	$100 \ kHz$	
串扰率	$\sim 7\%$	$\sim 13\%$	
推荐电压	击穿电压 +4.5 V	击穿电压 +4 V	

Company	NDL	НРК
Туре	22-15	S14160-1315PS
Sensitive area (mm ²)	1.6*4	1.69
PDE (%)	40	32
Gain (*10⁵)	2.4	3.6
Pixel No.	7400*4	7284
Breakdown Voltage (V)	19	38
OverVoltage (V)	4	4
Dark Count (kHz)	330*4	120
Cross Talk (%)	8.5	1.0

AHCAL SiPM

Pedestal issue

- Self-trigger mode, DAC calibration
- Inject DAC(50, 100, 200, 300, 400) into channel 0, and observe the signal in channel 1

• guess : crosstalk may exist in some chips and crosstalk will change

Photon generating process

- Photon number
 - > $E_{MIP} = E_{Truth} / 0.305 \text{ MeV}$ > p.e. = $E_{MIP} / \text{light yield}(p.e./MIP)$ > photon = p.e./PDE
- Poisson smear
- Non-uniformity of light output(~4.2%)

Parameter		Symbol	S12571-010P	S12571-015P	Unit
Spectral response range		λ	320 to 900	320 to 900	nm
Peak sensitivity wavelength		λp	470	460	nm
Photon detection efficiency $(\lambda = \lambda p)^{*4}$		PDE	10	25	%
Dark count*5	Typ.		100	100	kcps
	Max.		200	200	
Time resolution (FWHM)*6			300	250	ps
Terminal capacitance		Ct	35	35	pF
Gain		M	1.35 × 105	2.3 × 10 ⁵	-
Gain temperature coefficient		ΔΤΜ	1.6 × 10 ³	3.5 × 10 ³	/°C
Breakdown voltage		VBR	65 ± 10	65 ± 10	V
Recommended operating voltage		Vop	VBR + 4.5	VBR + 4.0	V
Temperature coefficient of recommended operating voltage		∆TVop	60	60	mV/°C

SiPM model: SiPM pixel saturation

- Hamamatsu SiPM S12571-010P, S12571-015P
 > 10000(100*100), 4489(67*67) pixels respectively
 > ~ 8 , 22 p.e./MIP
- SiPM saturation model
 - Uniform sampling a pixel from pixel array
 - Binomial sampling for PDE
 - ➢ IF NOT avalanche, then let it avalanche
 - Get total fired pixel number

End

中国科学技

- Hamamatsu SiPM S12571-010P, S12571-015P •
 - Optical crosstalk may not be ignored

$$P_{CT} = (N_{2p.e.} + N_{3p.e.} + N_{4p.e.} + ...)/(N_{1p.e.} + N_{2p.e.} + N_{3p.e.} + ...)$$

- **Crosstalk Model** •
 - ➤ 100*100 , 67*67 pixel placement
 - Uniform sampling a neighboring pixel from eight directions
 - > Set P_{CT} as probability of optical crosstalk occurs in one of neighboring pixel

pixel_pt_0.10

SiPM model: SiPM crosstalk

ADC conversion

- ADC && gaussian smear
 > ADC Mean = N_{p.e.} * SiPM Gain
 > ADC Sigma = 3 * sqrt(N_{p.e.})
- High-low gain mode ADC
- Pedestal fluctuation
- High-low gain saturation
 - \succ High gain saturation: high adc > switch point , let high adc =4000
 - Low gain saturation : low adc > 3000, let low adc = 3000

