

CEPC GS-HCAL

Boxiang Yu ,Sen Qian (for the CEPC Calo Group)

Oct. 24th , 2024, CEPC workshop

1. Introduction and Requirement

CEPC as Higgs/W/Z boson factories

- ❖ H/W/Z decay into hadronic final states are dominant, it is $\frac{100}{300}$ crucial to design high performance calorimetry system crucial to design high performance calorimetry system
- **❖ Required Jet Energy Resolution** σ **/E ~ 3-4% at 100 GeV** ⁸⁰

CEPC CDR, [arXiv:1811.10545](https://arxiv.org/abs/1811.10545)

1. Introduction and Requirement

 \rightarrow The increase of sampling layers (40 \rightarrow 48 layers) will improve the total nuclear interaction length ($-5\lambda \rightarrow 6\lambda$) and suppress hadronic shower leakage, which is beneficial to achieve better BMR and accuracy of benchmark physics processes.

2. Technology Survey and Our Choice

n **Three major options for CEPC Hardronic Calorimeter**

- ① RPC-DHCAL (SDHCAL, prototype): 48-layer
- ② Plastic Scintillator-AHCAL (PS-HCAL, prototype): 40-layer
- ③ **Glass Scintillator-AHCAL (GS-HCAL):** (**new design** for CEPC Ref-TDR)

PFA calorimetry: extensively explored within the CALICE collab.

2.1 Glass Scintillator R&D

- \triangleright The GS collaboration was established in 2021, it focuses on the large-area & highperformance glass scintillator for applications in nuclearand particle physics.
- \triangleright The GS collaboration is organized by IHEP and the members include 4 Institutes of CAS, 6 Universities, 3 Factories currently.

2.1 Glass Scintillator R&D

- The GS group did substantive research based on five glass scintillator
types simultaneously and impressive progress has been achieved
 \checkmark The performance of the best glass sample approach our initial goals, i.e. types simultaneously and impressive progress has been achieved $\frac{1}{2}$
- The performance of the best glass sample approach our initial goals, i.e. $\frac{5}{2}$ ¹⁰⁰⁰ $\frac{1.5 \text{ N} \cdot \text{N} \cdot \text{N}}{2}$ 6 g/cm³ & 1000 ph/MeV & \sim 100 ns
- \checkmark The GS group is leading R&D efforts on high density glass scintillator \checkmark ¹

Density (g/cm^3)

6

2.1 Glass Scintillator (GS1) TB Performance

CERN Muon-beam (10 GeV muon) 11 glass tiles tested at CERN (2023/5)

- Ø **Typical Light Yield:** 500 – 600 ph/MeV
- Ø **Typical MIP response:** 60 – 70 p.e./MIP

DESY Electron-beam (5 GeV electron) 9 glass tiles tested at DESY (2023/10)

- Ø **Typical Light Yield:** 600 – 700 ph/MeV
- Ø **Typical MIP response:** 70 – 80 p.e./MIP

Ø **Typical Light Yield:** 500 – 700 ph/MeV Ø **Typical MIP response:** $60 - 80$ p.e./MIP

3.1 GS-HCAL vs PS-HCAL

3.2 GS-HCAL Energy Resolution

n **A full detector geometry constructed with DD4hep in CEPCSW**

- GS1 (Gd-Al-B-Si-Cs): density 6 g/cm^3 , $\lambda_I =$ 242.8 mm, attenuation length ~ 23mm
- Geometry: follow the mechanics design, with simplified supporting structures.
- $-$ GS cell size 4 × 4 × 1 cm 3 , 2.7cm / layer, 48 layers, $6\lambda_{\rm\scriptscriptstyle I}$ in total

3.3 GS-HCAL Physics Performance

- n **Hadron Energy Resolution (full sim + digi) :**
- **PFA** Reconstruction for $ee \rightarrow ZH \rightarrow \nu \nu gg$ events:
	- Tracker + Crystal ECAL + GS-HCAL (barrel only)

$$
\sigma_E/E=\frac{29.8\%}{\sqrt{E}}\oplus 6.5\%
$$

- Improvements are expected with further optimizations (e.g. tracking, clustering, calibrations) **PFA Reconstruction for** $ee \rightarrow ZH \rightarrow vvgg$ **events:
** $-$ **Tracker + Crystal ECAL + GS-HCAL (barrel only)
** $-$ **Improvements are expected with further optimizations (e.g. tracking, clustering, calibrations)
** $-$ **BMR** = 3.95±0.10%
-

3.4 Comparison of Energy Resolution

RPC-SDHCAL, 48-layer, 1x1 cm² PS-HCAL, 40-layers, 4x4 cm²

GS-HCAL, 48 layers, 4x4 cm²

11

3.4 Comparison of Energy Resolution

12

4. GS-HCAL Design

p **GS-HCAL: Barrel (16 sectors) and two Endcaps**

- \circ Thickness of the Barrel : 1315 mm
- \circ Inner radius of the Barrel : 2140mm (D_{in}=4280 mm)
- o Barrel Length along beam direction : 6460 mm
- \circ Number of Layers : 48 (~ 6 λ _I)

4.1 GS-HCAL Mechanical Design (Barrel)

4.2 GS-HCAL Mechanical Design (Endcap)

Schematic of one layer ¹⁵

4.2 GS-HCAL Mechanical Design (Endcap)

4.3 GS-HCAL Cooling Simulation

Ø **Cooling simulation of 1 active layer module (320mm 646mm)**

- \bullet Heat source (chip): 15 mW/ch
- \bullet coefficient of heat conduction: 5000W/m² K;
- Inlet water 25°C, environment temperature is 25°C
- \bullet Thermal contact resistance: 500W/m²

Temperature difference (GS vs SiPM): 2.8 °C

5. GS-HCAL Readout Electronics

- n **Thickness: 3.2mm**
	- PCB 1.2mm
	- ASIC Chip 2mm
- n **Aggregation board at the end of barrel**

Aggregation board at the end of barrel, cable connection ¹⁸

6. Technical Challenges

■ The main technical challenges

- n R&D of the **high performance Glass Scintillator**
	- \blacksquare e.g. high density, high light yield, large attenuation length, short decay time;
- Mass production of high quality GS title and SiPM in cost effective way;
	- Cost of GS title (40x40x10 mm³) ~ \$1/cc → further cost reduction ?
	- \blacksquare Hamamatsu HPK / NDL SiPM (3x3 mm²) ~ \$1.5/ch with O(5M) pieces
	- \blacksquare Optimizing granularity, GS and SiPM couplings to reduce cost
- Highly integrated, **fully embedded and scalable electronics** with a parallel readout;
- Design and installation of the **big size and heavy weight** detector structure.

7. Working Plan and Schedule

8. Summary

Detector

- R&D of high quality GS and develop technique for mass production
- Optimize GS title granularity (cell size), GS and SiPM coupling
- GS-HCAL prototype for beam test

n **Electronics**

- Optimization of readout electronics design
- **Mechanics**
	- Optimization of the mechanic design
	- Optimization of the cooling design
- **Simulation and Performance with CEPCSW**
	- Optimization of GS-HCAL design
	- GS-HCAL full simulation and reconstruction for benchmark physics

Thanks for your attention !

Oct. 17th, 2024, CEPC Detector Ref-TDR Review **Contract Contract Contract Contract Contract Contract Contract**

2. Requirement

7. Cost Estimation: GS-HCAL vs PS-HCAL

7. Cost Estimation: RPC-SDHCAL

SiPM

NIMA 980 (2020) 164481

- ^v **HPK-SiPM**
	- ^o Low PDE, dark rate and crosstalk
	- ^o High breakdown voltage
	- ^o Better quality control

- ^v **NDL-SiPM**
	- ^o High PDE, dark rate and crosstalk
	- ^o Low breakdown voltage
	- ^o Low price

SiPM

n **SiPM Options:**

- **HPK S13360-6025PE,57600 pixels**
- **NDL EQR06 11-3030D-S,244760 pixels**
- **HPK S14160-3015PS,39984 pixels**
- **HPK S14160-3025PS, 14440 pixels**

Key parameters to energy resolution
Dynamic range: $0 \sim 100$ MIP can cover >99.99% cases
- For SiPM: 8000 p.e. can be controlled in linear range (suppose LY ~ 80 p.e./MIP).
- For electronics: 1~1k can be achieved.
- Con

n **Dynamic range: 0~100 MIP can cover >99.99% cases**

- For SiPM: 8000 p.e. can be controlled in linear range (suppose LY \sim 80 p.e./MIP).
- For electronics: 1~1k can be achieved.
- Considering the common electronics design for ECAL, HCAL and Muon, HCAL's

4.4 GS-HCAL Background Estimation

Simulation of beam background processes:

- 50 MW(H), bunch spacing 355 ns, with pair production, single beam processes
- Event rate with 0.1 MIP threshold: barrel \leq 5 kHz, endcap \leq 50 kHz

5.2 GS-HCAL Mechanical Design (Endcap)

- Ø **Max. deformation in one active layer: 3mm (due to gravity)**
- Ø **Horizontal extrusion deformation: 0.037mm**
- Ø **Max. principal stress at narrow end: 37MPa**

3.3 Comparison of Scintillators

Plastic Scintillator Glass Scintillator Crystal Scintillator

Energy resolution Large density **High light yield** Low cost **x** Fast decay Large size ******

Large density ★★★ **High light yield** $\star \star \star$ **Energy resolution** $\star \star \star$ Low cost **Fast decay** Large size **the set of the set of t**

1. GS-HCAL: Sample test

The samples (called AS glass) post to EIC for the test.

1. GS-HCAL: Sample test

Small-Size Sample

- $\text{Size=}5*5*5 \text{ mm}^3$
- Density~ 6.0 g/cm³
-
- $ER = 25.8\%$
- LO in $1\mu s = 1074$ ph/MeV $\frac{200}{s}$
- Decay=101 (2%), 1456 ns

Large-Size Sample

- $Size=40*40*10$ mm³
- Density= $6.0 \frac{\text{g/cm}}{2}$ $\frac{1000}{1400}$
- **n** $LY \sim 1200 \text{ ph/MeV}$
- $ER = 33.0\%$
- **n** LO in 1 μ s=607 (51%)
- Decay=117 (3%), 1368 ns $\frac{0.11 \times 10^{-10}}{0.0000 \times 0.000}$ 15000 20000

SIOM-56 SIOM-57 SIOM-58

BGO

25000

30000

35000 **ADC** channel

- **Energy Measurement: ASIC for ECAL & HCAL**
- **Data transmission:** common data platform (see electronics report)
- **Trigger mode:** FEE trigger-less readout

5.1 GS-HCAL Mechanical Design (Barrel)

Ø **Absorber layer structure** The bolts go through the upper trapezoid plate, the lower absorber layer and fix it with the lower trapezoid plate Screws used for fix the upper absorber plate and upper 4 cooling pipes trapezoid plate for each layer Screws used for fix the edge sealing **Absorber Layers module (320mm 646mm)** Ø **Simulation of absorber structure** 0.73645 0.73158

Deformation difference between 48 layers is lower than 0.05mm

Screw for fixing active

layer module

Deformation difference within 1 layer is lower than 0.7mm 35

3. GS-HCAL Mechanical Design

