The R&D of the New Glass Scintillator for HCAL of CEPC

Gao Tang, Sen QIAN

On Behalf of the GS R&D Group

CEPC Workshop, 2024. 10. 23th

- 1. The GS-HCAL of CEPC;
- 2. The Motivation and Design of GS ;
- 3. The progress of the R&D of GS;
- 4. Summary and Next Plan;

G lass Scintillator Collaboration

1.1 HCAL Design Options (Before)

□ Several HCAL design options have been proposed

- Based on Gaseous Detector
 - e.g. CALICE SDHCAL doi:10.1088/1748-0221/11/04/P04001
- Based on Liquid Argon
 - e.g. ATLAS LAr Endcap HCAL doi:10.1016/j.nuclphysbps.2011.03.150
- AHCAL: **Plastic Scintillator** & SiPM readout
 - e.g. CEPC AHCAL doi:10.1088/1748-0221/17/11/P11034

CALICE SDHCAL Prototype

> ATLAS LAr Endcap HCAL

> CEPC AHCAL Prototype

1.2 HCAL Design Options (After)

Longitudinal cross-section of the FCC-hh reference detector

Task 1.2: Hadronic section with optical tiles	
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/Steel
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/Steel
Task 1.3: Hadronic section with gaseous readout	
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/Steel
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/Steel
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers+Scintillating plastic tiles/ Heavy Glass

Example layout of the EIC detector base design

Task 1.2

- AHCAL: Concept for continous readout
- ScintGlass HCAL: cm scale tiles Task 1.3
- T-SDHCAL: Study of the impact of timing on the PFA performance
- MPDG-HCAL: Completion of 6 layer 20x20 cm² proto
- ADRIANO3: Small scale test layers

The 4th Conceptual Detector Design

Scint Glass PFA HCAL

Advantage: Cost efficient, high density Challenges: Light yield, transparency, massive production.

- Further performance goal: BMR $4\% \rightarrow 3\%$
- Dominant factors in BMR: charged hadron fragments & HCAL resolution
 - Higher density provides higher energy sampling fraction
 - Doping with neutron-sensitive elements: improve hadronic response (Gd)
 - More compact HCAL layout (given 4~7 nuclear interaction lengths in depth)

I. The GS-HCAL of CEPC;

2. The Motivation and Design of GS;

3. The progress of the R&D of GS;

4. Summary and Next Plan;

2.0 What is the Glass Scintillator?

HND-S2 BC418		
Plastic Scintillator	Glass Scintillator	Crystal Scintillator
High light yield $\star \star$	High light yield 🛛 🔸	High light yield 🛛 📩 📩 📩
Fast decay 🔶 📩 📩	Fast decay 📩 📩	Fast decay 📩 📩
Low cost $\star \star \star$	Low cost $\star \star \star$	Low cost
Large Density 🔶 📩	Large Density 🛛 📩 📩	Large Density 🛛 📩 📩
Energy resolution 🔶	Energy resolution 🛛 📩 📩	Energy resolution 🛛 📩 📩
Large size $\star \star \star$	Large size	Large size 🔶

2.1 Target of Glass Scintillator

Key parameters	Value	Remarks		
Tile size	$\sim 40 \times 40 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels		
Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response		
Density	6-7 g/cm ³	More compact HCAL structure with higher density		
Intrinsic light yield	1000-2000 ph/MeV			
Transmittance	~75%	Higher intrinsic LY can tolerate lower transmittance		
> MIP light yield	~100 p.e./MIP	Needs further optimizations: e.g. SiPM-glass coupling		
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold		
Scintillation decay time	<300 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)		
Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra		

2.2 Current Research Status of the GS

- > Before 2000, the high-density GS is mainly based on Pb (plumbum) or Bi (bismuth), with poor scintillation light;
- After 2000, GS with rare-earth elements (Tb, Terbium; Ce, Cerium) attract more attention for improved LY
- However, it's a great challenge to realize a high density and high light yield at the same time

2.3 The Design of the Glass Scintillator

High Light Yield: Lanthanide for the Luminescence Center: Cerium (Ce);

High Density and Low radioactivity background: Gadolinium (Gd);

2.4 Large Area Glass Scintillator Collaboration

The GS collaboration was established in 2021, it focuses on the large-area & high-performance glass scintillator for applications in nuclear and particle physics.

> The GS collaboration is organized by IHEP and the members include 4 Institutes of CAS, 6 Universities, 3 Factories currently.

11

2.5 The Scintillator Test Facilities for GS

Time (ns)

Energy (eV)

Others

.....

Intensity

- Neutron discrimination

 Image: ADC channel
 > Neutron discrimination

 Image: ADC channel
 > Rise time

 Image: ADC channel
 > Fall time
- Fall time Fall time Decay time A fterglow

-GC-160

GC-350 GC-500 CeO₂

-CefNO.

- AfterglowCoincidence time
 - Valence state
 - Coordination
 - Elemental analysis

Transmittance

Refractive index

Energy resolution

Emission peak

MIP response

Absorbance

Light yield

- Structural analysis
- Faraday effect
- Radiation resistance
- **Homogeneity**

IHEP--PMT Lab for Scintillator Test

IHEP--Radioactive Test

➢ IHEP--XAFS

IHEP-CSN-- P Beam

CERN-MUON Beam

12

Radioactive Sources Test -- Energy Spectrum --Light Yield

- gamma: 137Cs, 60Co, 133Ba,
- neutron: 252Cf, Am-Be
- electron: 90Sr-90Y, 22Na

Through the waveform sampling data acquisition system, we can obtain **Light Yield, Energy Resolution and Decay Time** of the scintillator.

γ/n Energy Spectra

γ/n Decay Time

Special Condition TEST Platform

CERN Muon-beam (10 GeV muon) 11 glass tiles tested at CERN (2023/5)

- Typical light yield:
 500 600 ph/MeV
- Typical MIP response: 60 – 100 p.e./MIP

DESY Electron-beam (5 GeV electron)

9 glass tiles tested at DESY (2023/10)

- Typical light yield: 600 – 700 ph/MeV
- Typical MIP response: 80 – 90 p.e./MIP

IHEP Cosmic-Muon- (3GeV muon) 4 glass tiles tested at IHEP (2024/4)

- Typical light yield: 600 – 700 ph/MeV
- Typical MIP response:
 50 60 p.e./MIP

I. The GS-HCAL of CEPC;

2. The Motivation and Design of GS ;

3. The progress of the R&D of GS;

4. Summary and Next Plan;

3.0 The GS Samples produced (>1000)

- > There are 5 types of GS for the study, and focous on the GS1, Borosilicate Glass for better performance;
- ➢ Now, the Density~6.0 g/cm³, LY>2400 ph/MeV, ER=25.8%, could be accept to be the candidate for GS-HCAL;

GS1—LY>2000 ph/MeV

- **Density~5.6** g/cm³
- LY=2202 ph/MeV
- ER=27.7%
- Decay=129 (6%), 2466 ns

- Density~ 6.0 g/cm^3
- LY=2005 ph/MeV
- ER=37.6%
- Decay=111 (5%), 1063 ns

- Density~6.0 g/cm³
- LY=2455 ph/MeV
- **ER=25.8%**
- Decay=101 (2%), 1456 ns

BGRI

2024.06

BGRI-97S

JGSU-107

1/4 BGO

ADC channel

BSO

- Density~5.1 g/cm³
- LY=2066 ph/MeV
- ER=30.2%
- Decay=125 (4%), 1782 ns

2024.06

1. How to ensure the performance stability of large size glass sample?

2. How to improve the light collection efficiency when coupling large size glass and SiPM?

I. The GS-HCAL of CEPC;

2. The Motivation and Design of GS ;

3. The progress of the R&D of GS;

4. Summary and Next Plan;

G lass Scintillator Collaboration

4.1 Summary of GS

Glass scintillator of high density and light yield

♦ GS1: Gd-Al-B-Si-Ce³⁺ glasses: (Borosilicate Glass)

6.0 g/cm³ & 985 ph/MeV with 30.3%@662keV & 105 ns

◆ GS5: Gd-Ga-Si-Ce³⁺ glasses: (Silicate glass)

5.9 g/cm³ & 1154 ph/MeV with 25.4%@662keV & 323 ns

- Ultra-high density **Tellurite Glass**—6.6 g/cm³
- High light yield Glass Ceramic—3500 ph/MeV
- Fast Decay Time **Pr³⁺-doped Glass**—100 ns
- Large size Glass—51mm*51mm*10mm

4.2 Summary of GS R&D

Parameters	Unit	BGO	GS1	GS1+	GS5
Cost		1	0.1 ?		
Density	g/cm ³	7.13	6.0	6.0	5.9
Hygroscopicity		No	No	No	No
Radiation Length, X ₀	cm	1.12	1.59	1.60	1.61
Transmittance	%	82	70	80	80
Refractive Index		2.1	1.74	1.71	1.75
Emission peak	nm	480	400	390	390
Light yield, LY	ph/MeV	8000	985	2445	1154
Energy resolution, ER	%	9.5	30.3	25.8	25.4
Decay time	ns	60, 300	36, 105	101, 1456	90, 300

■ The data of the GS1 and GS5 come from the small size of 5mm*5mm*5mm, we need to produce the large size smaple of 40mm*40mm*10mm for the CEPC-GSHCAL module.

4.3 Next Plan for GS-HCAL

Gd-R-B-Si-Ce³⁺ (R=Al, Ga) oxyfluoride is still the focus of future research

- Stable preparation of large size glass scintillator with light yield of 1000 ph/MeV
- > Try to prepare large size glass scintillator with light yield of more than 2000 ph/MeV
- Design different glass system for different requirements
- Control the cost of glass scintillator

See the unseen change the unchanged

N2+H2-714H3

Claraday

THANKS

Collaboratio

0101110001

The Innovation

100 element

