Beam-induced background studies for CEPC calorimeters

20 00 00 00 00 00

Weizheng Song

On behalf of the CEPC Ref-TDR ECAL working group

2024.10.23

The 2024 international workshop on the high energy Circular Electron Positron Collider

Introduction

- Particle Flow Approach(PFA) calorimeter in CEPC Ref-TDR design:
 - Physics target: boson mass resolution 3~4%.
 - Homogeneous crystal ECAL + Scintillating glass HCAL
- Proper estimation of level and distribution of the beam-induced background in the calorimeter:
 - Crucial input for the design and optimization of electronics and trigger system.
 - Impact on the performance of detector design.
 - Develop methods to mitigate beam-induced background.

Source of beam-induced backgrounds

- This talk focus on beam-induced backgrounds in Higgs mode:
 - Based on the 50-MW design of CEPC Accelerator TDR, 355ns/bunch crossing.
 - > Beam loss rate in Z-pole is under optimization.
 - > W and top mode will be delivered in the future.

	Higgs	Z	W	tī	
Number of IPs	2				
Circumference (km)	100.0				
SR power per beam (MW)	50				
Half crossing angle at IP (mrad)	16.5				
Bending radius (km)	10.7				
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	29.52	5.98	1.23	
Bunch number	446	13104	2162	58	
Bunch spacing (ns)	355	23	154	2714	
	(53% gap)	(10% gap)	154	(53% gap)	
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0	
Beam current (mA)	27.8	1340.9	140.2	5.5	
Phase advance of arc FODO (°)	90	60	60	90	
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71	
Beta functions at IP β_x / β_y (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7	
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7	
Betatron tune v_x/v_y	445/445	317/317	317/317	445/445	
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.5	1.05/2.5	2.0/2.6	
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.1	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune v_s	0.049	0.032	0.062	0.078	
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/930	60/195	81/23	
Beam lifetime requirement (min)	20	81	25	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	8.3	192	26.7	0.8	

*from Haoyu Shi

*CEPC Accelerator TDR

Source of beam-induced backgrounds in Higgs mode

✓ Pair production, Beam-Thermal Photon and Beam-Gas Scattering(Elastic/inelastic).

- > Injection and synchrotron radiation will be considered in the future.
- Multi turn Bremsstrahlung and radiative bhabha have basically been shielded outside the interaction region with collimators.

Simulation of CEPC calorimeters

- A realistic crystal ECAL and glass HCAL geometry has been implemented with DD4HEP.
- Following latest mechanical design.
- Taking wrapping, electronic boards, cooling and mechanical supporting into material budget.

Digitization of CEPC calorimeters

ECAL:

- $E_{hit} \rightarrow N_{p.e.}: N_{p.e.} = \frac{E_{hit}[GeV]}{E_{mip}[GeV/MIP]} \times LY$
 - Effective light yield: 200 p.e./MIP.
- *Time*_{p.e.}: for study of pile-up
 - time of photoelectron arriving at SiPM is obtained from Geant4 optical simulation.
 - considering scintillation decay time(τ = 300ns for BGO) and transmission.
- Time window: only readout the photoelectron within the time window.
- Threshold: 0.1 mip

HCAL:

- Effective light yield: 80 p.e./MIP
- Threshold: 0.1 mip

Count rate

For each bar: Count rate [Hz] = Times over threshold [times] / Total time [s]

e.g., count rate = 8/35500ns = 225 KHz, assuming each bin stands for one time window.

• Count rate is a key parameter in determining the design of ASIC and estimation of data size.

Count rate 600ns time window w/ 0.1mip threshold		Mean	Maximum	
ECAL	Barrel	6.8 khz	211 khz	
	Endcap	13.86 khz	333 khz	
HCAL	Barrel	0.24 khz	6.2 khz	
	Endcap	1.45 khz	46.3 khz	

Count rate 200-300 kHz with 0.1 MIP threshold for ECAL <50 kHz with 0.1 MIP threshold for HCAL

Count rate

2024/10/23

Crystal bar with high count rate is mainly concentrated in the first few layers of the ECAL.

Count rate vs time window.

Dealing with the first few layers and time window are potential solutions

8

Occupancy

Occupancy = fired cells / all cells (per 355ns).

• The occupancy is a key parameter for trigger system.

Occupancy		W/O Threshold		W/ 0.1MIP Threshold	
		Mean	Maximum	Mean	Maximum
ECAL	Barrel	1.58e ⁻²	1.87e ⁻²	2.50e ⁻³	3.99e ⁻³
	Endcap	1.25e ⁻²	1.72e ⁻²	3.94e ⁻³	7.93e ⁻³
HCAL	Barrel	5.86e⁻ ⁶	1.09e ⁻⁴	1.13e ⁻⁶	5.02e⁻⁵
	Endcap	9.11e ⁻⁵	9.38e ⁻⁴	2.36e ⁻⁵	5.28e ⁻⁴

Occupancy 10⁻³ level with 0.1 MIP threshold for ECAL < 10⁻⁴ with 0.1 MIP threshold for HCAL

Occupancy

- Occupancy = fired cells / all cells (in one bunch cross).
- The occupancy is a key parameter, will influence the trigger system, signal-to-noise ratio and energy measurement.
- The distribution of occupancy in ECAL Barrel.

Occupancy in the first few layers (1-3%) are bigger than other layers remove it in reconstruction is potential way

Total ionizing dose

- Total ionizing dose(TID):
 - for each cell: accumulated energy / mass [Gy], assuming 3600 hours in one year.
 - radiation damage in crystal and glass, light output degradation.

*F. Yang, L. Zhang and R. -Y. Zhu, "Gamma-Ray Induced Radiation Damage Up to 340 Mrad in Various Scintillation Crystals,"

TID in single cell up to 100 Gy/year in Higgs mode

Conclusion

Beam-induced background studies for CEPC calorimeters:

- crucial for the design and optimization of the electronics, triggering, and hardware.
- Beam-induced background under the Higgs mode:
 - levels and distributions of counting rate, occupancy, and total ionizing dose (TID).
 - very preliminary results on the energy resolution of the crystal ECAL under background conditions. will deliver soon.
- Next step:
 - investigate the beam background under Z, W, and top modes.
 - exploring potential methods to reduce the Beam-induced background.

backup

Event display

- Full simulation of CEPC Ref-TDR detector.
- With 0.1mip threshold for ECAL and HCAL.
- Energy response of beam-induced backgrounds in calorimeter barrel.
 - ECAL: long bar
 - HCAL: small cube
- Mainly concentrated in the first few layers of the ECAL.
- HCAL is better than ECAL.

Count rate of HCAL

Energy resolution

very preliminary results

