

Geometric Optimization Simulation of the CEPC Vertex Detector

Tianyuan Zhang, Zhijun Liang, ChengDong Fu, Jinyu Fu, Wei Wei, Ying Zhang Institute of High Energy Physics, CAS

Introduction

The identification of heavy-flavored quarks and τ leptons is an important physics goal of the Circular Electron Positron Collider(CEPC). The vertex detector of the CEPC is capable of obtaining precise track parameters of charged particles in the vicinity of the Interaction Point to reconstruct the decay vertex of short-lived particles. The CEPC vertex detector currently adopts two schemes, one based on the MOST2 prototype Long Barrel scheme, and the other based on the bent MAPS Stitching Mixing scheme. Both structures currently cover a polar angle of 8.1° along the length of the z-direction using a chip with a single-point spatial resolution of 5um. Based on the radius of the beam pipe of 10 mm in the CEPC-TDR, the minimum radii for the Long Barrel scheme and the Stitching scheme are 12um and 11.06um, respectively.

Material budget

Long Barrel scheme:

 More chips used in middle and outer layers, so additional four layers of aluminum in each for stability and to prevent significant deformation.

Structure

Long Barrel scheme

- Ladders using TaichuPix-3 chips **on both sides** as repeating units for each layer;
- TaichuPix-3 adopts a 180 nm CIS process with sizes of 15.9mm * 25.7mm;
- Carbon fiber, along with flexible circuit boards, is affixed to both sides as a support

12.5um Acrylicglue 12.5um Kapton 12.5um Acrylicglue Bum G4 A 13um Kapton 12.5um Acrylicglue 25um Kapton 12.5um Acrylicglue 13um Kapton 12.5um Acrylicglue 12.5um Kapton 12.5um Acrylicglue 334um CFPR 12.5um Acrylicglue 12.5um Kapton 12.5um Acrylicglue 8um G4 A 13um Kapton 12.5um Acrylicglue

25um Kapton

13um Kapton

12.5um Acrylicglue 12.5um Kapton 12.5um Acrylicglue

12.5um Acrylicglue

The material budget X_0 of two structures vary with φ when $\theta = -90^\circ$.

The average value $\overline{X_0}$ within the range of $\varphi \in (0, 360)$ varies with θ .

Mat	BeamPipe	Layer/VXD 1	Layer/VXD 2	Layer/VXD 3	Layer 4	VXD5
Long Barrel	0.162%	0.565%	0.676%	0.672%		
Stitching	0.162%	~0.06%	~0.06%	~0.06%	~0.06%	0.629%

Performance

Stitching Mixing scheme

- A bent MAPS sensor adopts a 65nm CIS process with sizes of 17.277 mm * 20.2mm;
- Chips are fixed on the support.

Details of the two schemes placements

Long Barrel features:

- Innermost layer radius: ~12mm;
- Three layers of ladder from inside to outside (total of six layers of chips);
- Different thicknesses of support structure for load-bearing consideration.

Stitching Mixing features:

- Innermost layer radius: ~11mm;
- Specific starting angle for each chip layer to ensure that outgoing particles pass through at most one dead zone in a straight line;
 Utilizing four layers of curved chips and one

ladder layer.

- When the momentum of the outgoing particle μ⁻ is lower than 40
 GeV/c, the TDR-Stitching Mixing scheme uses four-layer bent MAPS to perform better than the TDR-LongBarrel.
- The TDR-Stitching Mixing scheme employs triple-layer bent MAPS and four-layer bent MAPS in the low momentum range, with nearly identical performance in terms of the impact parameter d_0 .
- In the low momentum range, the TDR-Stitching Mixing scheme uses four-layer bent MAPS to improve d₀ by nearly 40% compared to the TDR-LongBarrel for particles emitted at any angle.

Summary

- The TDR-Stitching Mixing scheme features a reduced material budget compared to the TDR-Longbarrel scheme, resulting in a smaller *d*₀ resolution in the low momentum range;
- The TDR-Stitching Mixing scheme utilizing triple-layer bent MAPS demonstrates performance nearly equivalent to that of the four-layer MAPS;
- Further detailed simulation and optimization of the TDR-Stitching Mixing scheme are planned for the future.

	layer/VXD X	radius .mm	length .mm	arc length .mm	height .mm	support thickness .um
Long Barrel	VXD1	12.46	260.0		1.7	334
	VXD2	27.89	494.0		2.5	358
	VXD3	43.79	749.0		3.2	370
Stitching Mixing	layer 1	11.06	161.4	69.108		45
	layer 2	16.56	242.2	103.662		32
	layer 3	22.06	323.0	138.216		31
	layer 4	27.56	403.8	172.770		29
	VXD5	34.74	500.0		2.8	363

Reference

- Chengdong Fu, "Silicon Tracking at CEPC ", The 2023 international workshop on the High EnergyCircular Electron-Positron Collider, 23-27 October 2023, Nanjing.
- II. Hao Zeng, "Optimization of Silicon Pixel Vertex Detector for CEPC", Joint Workshop of the CEPC Physics, Software and New Detector Concept, 14-17 April 2021, Yangzhou.
- III. http://code.ihep.ac.cn/cepc/CEPCSW

The 2024 International Workshop on the High Energy Circular Electron Position Collider · Hangzhou, China

tyzhang@ihep.ac.cn