The 2024 International Workshop on the High Energy Circular Electron Positron Collider

https://indico.ihep.ac.cn/event/22089/sessions/14186/#20241025

# Measuring QED to $10^{-4}$ with radiative Bhabha for precision, for $e^+e^-$ collision luminosity



# **Physics goal at CEPC**



### Bhabha generators for MC study

- BHLUMI 4.04
   S. Jadach [CPC 101 (1997) 229]
- ReneSANCe 1.0.0
   R.Sadykov [CPC 256 (2020) 107445]

"Compariing Event Generator.." poster by J.Gong, this workshop

# **BHLUMI for LEP luminosity**

Framework of YFS exponentiation



#### **BHLUMI 4.04**

S. Jadach [CPC 101 (1997) 229]

#### 2000 systematic 0.054%

[NPB 547 (1999) 39] [PLB 459 (1999) 649] [OPAL Z<sup>0</sup> lineshape, EPJC 14, 373] **2020 systematic 0.037%** [PLB 803 (2020) 135319]



#### LEP theoretical uncertainties [EPJC 81 (2021) 1047]

| Type of correction/error                   | Update 2019     |
|--------------------------------------------|-----------------|
| (a) Photonic $\mathcal{O}(L_e \alpha^2)$   | 0.027% [8]      |
| (b) Photonic $\mathcal{O}(L_e^3 \alpha^3)$ | 0.015% [9]      |
| (c) Vacuum polariz.                        | 0.009% [7,10]   |
| (d) Light pairs                            | 0.010% [7]      |
| (e) Z and s-channel $\gamma$ exchange      | 0.015% [11, 12] |
| (f) Up-down interference                   | 0.0014% [13]    |
| (g) Technical Precision                    | (0.027)%        |
| Total                                      | 0.037%          |



BHLUMI  $e^+e^- \rightarrow e^+e^-(n\gamma)$ 



# BHLUMI $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC

### BHLUMI demo.f cuts

- ACC 0 CMS 10 mRad <  $\theta(e^{\pm})$  < 80 mRad
- ACC 1 .and. s'(P2,Q2)/s(P1,Q1) >0.5

### Beam crossing, 33 mRad

→ Boost in x direct e<sup>+</sup>, e<sup>-</sup> offset by 33 mRad

10 M events generated for 10 - 80 mRad,  $\theta(e^{\pm})$  distributed from 7 mRad ACC0 = 47.9 %

ACC1 = 45.9 %

θ(e<sup>±</sup>) shown
for CMS
and boosted
of all generated





events with 0 photos Show  $\delta$  back-back distribution

# BHLUMI $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC



o 91% with  $\Omega(e^{\pm},\gamma) < 5$  mRad

#### LumiCal acceptance:

- $\circ$  |y|>12 mm at LYSO front face  $\pm z=647$ mm
- $\circ~$  boosted  $e^\pm$  and  $\gamma$  selection applied
- $\circ~$  Correlation of E(e<sup>±</sup>) and E( $\gamma$ )
- $\circ~$  ISR vs FSR, by opening angle  $\Omega(e^{\pm}\!,\!\gamma)~$  to P2,Q2





## Acceptance for $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC

#### Bhabha events in LumiCal acceptance

**e<sup>+</sup>,e<sup>-</sup>,γ**: |y|>12 mm at LYSO front face ±z=647mm

| ±z<br>Hemispheres | BHLUMI<br>generated | & P2,Q2<br> y >12mm |
|-------------------|---------------------|---------------------|
| e⁺                | 60.3 %              | 3.87 %              |
| e <sup>±</sup> γ  | 39.7 %*             | 3.16 %              |

\*ISR 20.3%, FSR 19.4%

### **Detectable Bhabha, e<sup>+</sup>,e<sup>-</sup>,γ**: |y|>12 mm

| ±z<br>Hemispheres | P2,Q2<br> y >12mm | & E(γ)>0.1GeV<br> y(γ) >12mm           |
|-------------------|-------------------|----------------------------------------|
| e⁺                | 55.1%             | 14.7 %                                 |
| $e^\pm \gamma$    | 44.9 %            | ISR 0.89 %<br>FSR 13.8 %<br>FSR 2.96%* |

#### \*FSR $\Omega(e^{\pm},\gamma) > 5 \text{ mRad}$





### **Radiative Bhabha measurements**



8

# LumiCal acceptance, racetrack beampipe



LumiCal acceptance at |z|=1000mm, with RaceTrack pipe r=10mm

| <b>ONE</b> <i>e</i> <sup>+</sup> <b>or</b> <i>e</i> <sup>-</sup> detected |                   | e <sup>+</sup> , e <sup>-</sup> back-to-back detected |                   |
|---------------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------------|
| θ>25 mRad                                                                 | θ>25mR &  y >25mm | θ>25 mRad                                             | θ>25mR &  y >25mm |
| 133.5 nb                                                                  | 81.8 nb           | 85.4 nb                                               | 78.0 nb           |

# **Precision for Bhabha event counting to 10**-4 <sup>10</sup>

### Luminosity $\mathcal{L}$ is derived by

 $e^+e^- \rightarrow e^+e^-(n\gamma)$ 

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left( \frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$$

### Bhabha detected for

- a pair of back-back electrons,
- precision  $\vartheta$  of  $e, e(\gamma)$  in fiducial region

 $\delta L/L \sim 2 \delta \vartheta / \vartheta_{min}$ 

 $\delta L/L = 10^{-4}$ 

at  $z = \pm 1000 \text{ mm}$ ,  $\vartheta_{min} = 20 \text{ mRad}$  $\rightarrow \delta \vartheta = 1 \mu Rad$ , or  $dr = 1 \mu m$ 

error due to offset on Z

$$\rightarrow$$
 50  $\mu$ m on Z eq. dr =  $\delta z \times \vartheta = 1 \mu$ m

![](_page_9_Figure_12.jpeg)

Luminosity systematics due to event counting in/out fiducial edge  $\rightarrow$  offset on the mean of  $\theta_{min}$ 

![](_page_10_Figure_0.jpeg)

### 50 GeV electron shower on diamond

- 50 GeV electrons at CMS 10 mRad, boosted in Lab 26.5 mRad
- GEANT shower in **3 mm thick Cu beampipe (~300 mm traversing)**
- Measuring dE/step of **charged tracks** (>100 keV) **in diamond**

3mm Cu pipe, @26.5 mRad ch. Multiplicity Cu+diamond = 620 Shower spread in z:  $\sigma_z$ = 30 mm

![](_page_11_Figure_5.jpeg)

![](_page_11_Figure_6.jpeg)

![](_page_11_Figure_7.jpeg)

# Electron shower spread in $\theta$ on diamond

- Shoot 50 GeV electrons at CMS 9 ~ 12 mRad, Lab 25.5 ~ 28.5 mRad  $\bigcirc$
- dE/step deposits of charged tracks (>100keV) in diamond Ο

![](_page_12_Figure_3.jpeg)

#### dE/steps in z profile

y (mm)

# Survey/monitoring, for Beam IP position

![](_page_13_Figure_1.jpeg)

14

## **Smearing @ IP position of BHLUMI**

- bunch size  $\sigma_x = 6 \mu m$ ,  $\sigma_z = 9 mm$ • IP spot, 33mRad Xing  $\sigma_x = 6 \mu m$ ,  $\sigma_z = 380 \mu m$
- $Z \rightarrow e^+, e^-$  at  $\vartheta = 30 \, mRad$ smearing at @z=560mm smeared width  $\sigma(\vartheta) = 24 \, \mu Rad$ back-to-back  $\sigma(\Omega) = 21 \, \mu Rad$

![](_page_14_Figure_3.jpeg)

### e<sup>+</sup>, e<sup>−</sup> back-back

![](_page_14_Figure_5.jpeg)

# **CEPC LumiCal design**

![](_page_15_Figure_1.jpeg)

Bellow

**Bellow** 

 $= 17.4 X_0$ 

## **GEANT LumiCal electron shower**

![](_page_16_Figure_1.jpeg)

# Front 2X<sub>0</sub> LYSO, on radiative e,γ

### Bhabha hits on LYSO, |y|>12mm

### Incident particles are $e^{\pm}$ ,( $\gamma$ )

- GEANT sum dE/dx in each LYSO bars 3x3mm<sup>2</sup>, 23 mm long, 2X<sub>0</sub>
- **Deviation to e**<sup> $\pm$ </sup> **truth** (impact hit >E<sub>b</sub>/2) mostly < 0.2mm
- **Hit distributions in a Bar** distributed due to Bhabha θ, w./w.o. photon

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

### **Electron hits on 1<sup>st</sup> Si-wafer** IP $(\sigma_x, \sigma_z) = (6, 380 \, \mu m)$

**50 GeV**  $e^+$ ,  $e^-$  @ ( $\vartheta = \pm 30$  mRad,  $\varphi = 1.0$ , 1.0+ $\pi$  Rad) Si wafer @z=560mm  $\circ |\mathbf{x}| < 6.0 \text{ mm } \sigma(\vartheta) = 54 \ \mu \text{R}$  (1mm Be)

 $\circ |x| > 6.0 \text{ mm } \sigma(\vartheta) = 95 \mu R$  (1m Al pipe) ο back-back Op.Ang  $\sigma(\Omega) = 137 \mu R$ 

#### NJU GEANT4 validation, test-beam preparation

Be(1mm):  $\sigma(\vartheta) = 30 \,\mu\text{R}$ Be(2mm):  $\sigma(\vartheta) = 50 \,\mu\text{R}$ 

### → GEANT tracking steering, testbeam confirmation

![](_page_18_Figure_6.jpeg)

![](_page_18_Figure_7.jpeg)

![](_page_18_Figure_8.jpeg)

![](_page_18_Figure_9.jpeg)

**1 mm Be** thin pipe window 33mm = 0.09X<sub>0</sub> traversing @ 30mR

![](_page_18_Picture_11.jpeg)

![](_page_18_Figure_12.jpeg)

![](_page_18_Figure_13.jpeg)

# multiple scattering, against 10<sup>-4</sup>

- **1. BHLUMI** scattered  $e^+$ ,  $e^-$  **Multi. Scatt. smearing 100 µRad**  $\theta' = \theta \cdot \sigma (100\mu R), \quad \varphi' = \varphi \cdot \sigma (100\mu R)$
- 2.  $\delta N/N$  due to  $\sigma(100\mu R)$  smearing  $\delta N$  = deviation due to Multi.Scatt. effect is Gaussian, Symmetric at  $\theta_{min}$  = 25 mRad, slope of Bbhabha in neiboring 100  $\mu$ Rad bins to 25mR  $\delta N(@25mR)/N(25-80 mR) < 10^{-4}$

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

**Bhabha electrons, θ deviated by radiative photon** measuring e,γ vs QED predictions and cross section

- $\circ$  Si-det on electron  $\theta$ , multi.scatt. ~50  $\mu$ Rad
- $\circ$  ISR/FSR of e,  $\gamma$  in LYSO, 3x3 mm<sup>2</sup> segmentation

### Beam line, IP measurement

slow control & monitoring on beam x,y positions

- $\circ~1~\mu m$  precision on single beam position
- e<sup>+</sup>,e<sup>-</sup> beam line crossing → IP position,
   x,y, and z by beam-crossing, with the means better than 1 μm

### Test beams preparation for

- Multiple scattering by ~1° of 1mm thick Be
- o Electron shower sampling, in CEPC MDI configuration