

Study status of Beam Backgrounds and MDI Design at the CEPC

Haoyu SHI(IHEP, CAS) On behalf of the CEPC MDI Working Group CEPC Workshop 2024, MDI Session October 25th 2024, Zhejiang Univeristy, Hangzhou

- Introduction
- Current Study Status
 - Layout and Key Components
 - Beam induced Backgrounds
- Summary & Outlook

Introduction

- MDI stands for "Machine Detector Interface"
 - Interaction Region and other components
 - 2 IPs
 - 33mrad Crossing angle
- Flexible optics design
 - Common Layout in IR for all energies
 - High Luminosity, low background impact, low error
 - Stable and easy to install, replace/repair

	Higgs	Z	W	tī					
Number of IPs	2								
Circumference (km)	100.0								
SR power per beam (MW)	30 TOB DESIB								
Half crossing angle at IP (mrad)	16.5								
Bending radius (km)	10.7								
Energy (GeV)	120	45.5	80	180					
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1					
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6					
Piwinski angle	4.88	24.23	5.98	1.23					
Bunch number	268	11934	1297	35					
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)					
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0					
Beam current (mA)	16.7	803.5	84.1	3.3					
Phase advance of arc FODO (°)	90	60	60	90					
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71					
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7					
Emittance s _x / s _y (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7					
Betatron tune v_x/v_p	445/445	317/317	317/317	445/445					
Beam size at IP σ_x / σ_y (um/nm)	14/36	6/35	13/42	39/113					
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9					
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20					
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.7	1.2/2.5	2.0/2.6					
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1					
RF voltage (GV)	2.2	0.12	0.7	10					
RF frequency (MHz)			550						
Longitudinal tune v _s	0.049	0.035	0.062	0.078					
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	82/2800	60/700	81/23					
Beam lifetime (min)	20	80	55	18					
Hourglass Factor	0.9	0.97	0.9	0.89					
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5					

259%企

CEPC 2024, MDI Session, ZJU, H.Shi(shihy@ihep.ac.cn)

- Interaction Region Layout/Parameters
 - L* = 1.9m / Detector Acceptance = 0.99

The length of Interaction Region is -7m~7m at TDR Phase

New Beampipe Design – Half Detector pipe

Mechanical Design of the detector beam pipe

L. He's talk at this workshop

t_{max} of AL: 36.9°C

t_{max} of transition AL: 34.3°C

t_{max} of outer Be: 25.6°C

t_{max} of inner Be: 35.6°C

Q. Ji, L. He

170(Outer Be pipe) Outer Be Layer: 0.15mm Gap: 0.35mm, Coolant Inner Be Layer: 0.2mm 298(Inner Be pi 374 Thickness: ~0.2%X₀ **BPM BPM** LumiCal LumiCal Vertex Q. Ji, H. Wang 1mm Be window Temperature[C] Flange **Bellow** t_{max} of expending AL: 26.8°C ∆t: 5.1°C

- Water or Paraffin could be used as the coolant •
- Preliminary analysis shows that the dynamic • temperature/pressure could meet the requirements.

Design of the LumiCal

- Two parts, one before Flange, and one after
- LumiCal before flange:
 - 560~700mm,
 - Two Si-wafers, 2X₀ LYSO
- LumiCal after bellow:
 - 790~950mm
 - 14X₀ LYSO

XY Distribution

Background Estimation

A. Natochii

beam

Ζ

Single Beam

- Touschek Scattering
- Beam Gas Scattering(Elastic/inelastic)
- Beam Thermal Photon Scattering ٠
- Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Injection(Will be considered in future)

Beam Loss BG

TSC in SAD

Injection BG

- One Beam Simulated
- Simulate each background separately
- Whole-Ring generation for single beam BGs
- Multi-turn tracking(200 turns)
 - Using built-in LOSSMAP
 - SR emitting/RF on
 - Radtaper on
 - No detector solenoid yet

Touschek

SR BG & Mitigation

Y. Tang's poster(No.46) this workshop

- The central beam pipe was carefully designed to avoid the direct hitting of the SR photons
- The masks are implemented to further mitigate the secondaries
 - Several ways has been attempted, including the shrinking of the incoming beam pipe and different position/material/design of the mask.

- Luminosity related backgrounds
- One of the dominant backgrounds at the CEPC, may lead to two different impacts:
 - The impacts on detector, caused by the electrons/positrons produced by photons
 - The impacts on accelerator components outside of the IR, caused by the photons directly.
- Hard to mitigate

Parameter	Symbol	ILC-500	CLIC-380	CEPC-Z	FCC-Z	CEPC-W	FCC-W	CEPC-Higgs	FCC-Higgs	CEPC-top	FCC-top
Energy	E[GeV]	250	190	45.5	45.5	80	80	120	120	180	182.5
Particles per bunch	N[1e10]	3.7	2	14	24.3	13.5	29.1	13	20.4	20	23.7
Bunch Number				11934	10000	1297	880	268	248	35	40
Bunch Length	sigma_z [mm]	0.3	0.07	8.7	14.5	4.9	8.01	4.1	6.0	2.9	2.75
Collision Beam Size	sigma_x,y [um/nm]	0.474/5.9	0.149/2.9	6/35	8/34	13/42	21/66	14/36	14/36	39/113	39/69
Emittance	epsilon_x,y [nm/pm]	1e4/3.5e4	0.95e3/3e4	0.27/1.4	0.71/1.42	0.87/1.7	2.17/4.34	0.64/1.3	0.64/1.29	1.4/4.7	1.49/2.98
Betafuncti on	beta_x,y [m/mm]	0.011/0.48	0.0082/0.1	0.13/0.9	0.1/0.8	0.21/1	0.2/1	0.3/1	0.3/1	1.04/2.7	1/1.6
Factor	[1e-4]	612.7	6304.6	2.14	1.7	3.0	2.4	4.8	5.2	5.6	7.10
n_gamma		1.9	4.34	1.0	1.36	0.45	0.59	0.4	0.64	0.22	0.26
Relative lossper particle	%/BX	19.3		0.0041	0.0092	0.0067	0.0072	0.0096	0.0161	0.0062	0.0093

Mitigation of the BG

- Collimator design Requirements:
 - Beam stay clear region: 18 σ_x +3mm, 22 σ_y +3mm
 - Impedance requirement: slope angle of collimator < 0.1
- Collimators were implemented to reduce IR loss caused by single beam.
 - 16 sets of collimators were implemented for MDI purpose
 - ~20 sets of collimators were installed for passive machine protection and will also contribute to mitigating beam background.
- With the implementation of collimators, multi-turn beamstrahlung and radiative Bhabha loss particles have been effectively shielded outside the interaction region.
- Shielding has been implemented at both ends of the yoke using the 10 cm of paraffin.

S. Bai, Y. Wang, X. Cui

X. Cui's talk at this workshop

Loss Distribution

Loss Time

 $\frac{Loss Number}{1} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{1 - e^{-1}}$

Beam Lifetime

- Errors implemented
 - High order error for magnets
 - Beam-beam effect
 - No Solenoid Currently
- ~ 5x, especially upstream

Loss Rate =

- Noise on Detector(Backgrounds)
 - Occupancy
 - Estimating using the same tool with Physics simulation
- Radiation Environment(Backgrounds + Signal)
 - Radiation Damage of the Material (Detector, Accelerator, Electronics, etc...)
 - Estimating using the same tool with physics simulation including the dose calculation
 - Or FLUKA
 - Radiation Harm of the human beings and environment
 - Estimating using the same tool with physics simulation including the dose calculation
 - Or FLUKA
- The detector simulation on Ref-TDR is ongoing.

•	We have obtained a preliminary estimate of the
	beam-induced background levels in Higgs mode

• Assume an operational time of 7000hr/yr

BIB Rates Considered @ Higgs	Vacuum Level: 10 ⁻⁷ Pa, H ₂				
	50MW Higgs, 346ns/BX				
Pair Production	~1.82GHz in IR				
Beam Thermal Photon	~0.36MHz/beam in IR				
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR				
Beam Gas Coulomb	~0.24MHz/beam in IR				

H. Lu and J. Zhang's talk later

	alle					
eepf	Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy(%)	Ave. TID(Gy/yr)	
CCCC	Vertex	0.49	0.61	0.022	~21000	
	ІТК	0.0021	0.25	0.025(Strip)	128	
	TPC	0.092	0.20	0.0028	23.4(Supporting)	
	OTK – Endcap	0.0002	0.0006	0.35(Strip)	6.95	
	ECal – Endcap	0.011/bar	0.3/bar	0.0008	0.322	
	HCal – Endcap	0.002/GS	0.05/GS	0.0005	0.044	
	Muon – Endcap	0.00000001/cell	0.00002/cell	0.006	0.21	
20	LumiCal – Crystal	3.37	7.82	9.1	2610	

- Important to validate the modellings and Monte Carlo Simulation codes for the CEPC beam background simulation with real data where they are applicable.
 - BEPC II/BES III, SuperKEKB/Belle II, LEP I/II...
- Basic Principles Key Parameters & Distinguish
 - Single beam mode: three dominant contributions from Touschek, beam-gas and electronics noise & cosmic rays.

•
$$O_{single} = O_{tous} + O_{gas} + O_{noise+\mu} =$$

$$S_t \cdot D(\sigma_{x'}) \cdot \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$$

- Double beam mode: additional contributions from luminosity related backgrounds, mainly radiative Bhabha scattering
- $O_{total} = O_{e^+} + O_{e^-} + O_{\mathcal{L}}(\mathsf{Ideal})$

BESIII Benchmark

- BG experiments on BEPCII/BESIII has been done several times.
 - The experiment in 2021 separate the single beam BG sources, the data/MC ratio has been reduced due to the improvement of the IR model and the study of beam-beam.

H. Shi, B. Wang. H. Shi et.al

BG separation on 1st layer MDC

Data/MC radio improvements on 1st layer MDC

Data/MC radio in MDC

BESIII Benchmark

B. Wang

- BG experiments on BEPCII/BESIII has been done several times.
 - The experiment in 2022~2024 was focused on collimators.
 - Backgrounds has been reduced ~40%

- The study on Beam induced background is very important, including for a machine at the design phase. As well as the Design of MDI and IR Region.
- The importance of the beam induced backgrounds contains two main aspects:
 - The impact on the detector signal(noise)
 - The radiation caused by the beam induced backgrounds, the harm caused by the radiation.
- For the MDI region, we are updating the whole design to Ref-TDR Phase, and we are carefully design the layout and key components to make it works better.
- For the future high energy machine like CEPC,
 - We have updated the simulation to adopting TDR phase. The work on Higgs mode is almost done and acceptable, the work on Z mode is on going, the work on the other two mode will be done soon.
 - The mitigation helps a lot. However, we are sure to need more.
 - The benchmark of the simulation and the data from experiments are always needed.
 - Any kind of help/contribution/cooperation is appreciated.

- The study on Beam induced background is very important, including for a machine at the design phase. As well as the Design of MDI and IR Region.
- The importance of the beam induced backgrounds contains two main aspects:
 - The impact on the detector signal(noise)
 - The radiation caused by the beam induced backgrounds, the harm caused by the radiation.
- For the MDI region, we are updating the whole design to Ref-TDR Phase, and we are carefully design the layout and key components to make it works better.
- For the future high energy machine like CEPC,
 - We have updated the simulation to adopting TDR phase. The work on Higgs mode is almost done and acceptable, the work on Z mode is on going, the work on the other two mode will be done soon.
 - The mitigation helps a lot. However, we are sure to need more.
 - The benchmark of the simulation and the data from experiments are always needed.
 - Any kind of help/contribution/cooperation is appreciated.

Thank You

Backup

MDI Parameter Table

S. Bai

	range	Peak filed in coil	Central filed gradient	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	In ner diamet er	Outer diameter	Critical energy (Horizontal)	Critical energy (Vertical)	SR power (Horizontal)	SR power (Vertical)
L*	0~1.9m				1.9m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°												
QDa/QDb		3.2/2. 8T	141/84.7T/ m		1.21m	15.2/17.9mm	62.71/105.28 mm	48mm	59mm	724.7/663.1ke V	396.3/263k eV	212.2/239.23 W	99.9/42.8 W
QF1		3.3T	94.8T/m		1.5m	24.14mm	155.11mm	56mm	69mm	675.2keV	499.4keV	472.9W	135.1W
Lumical	0.56~0.7/0.9~1.1m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			28mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1					0.3m							26.5W	

Physics Gains for 20mm Be

First estimates made with fast simulation and scaling

Map of the MDI Study

Accelerator

Detector

IP Feedback	
BG Simulation	Central Beam Pipe
LumiCal	Vertex Detector
Vacuum Chamber	LumiCal
SR Masks	Silicon Tracker
QD0/QF1	ТРС
Anti-Solenoid	Hcal
Cryostats	Ecal
BPMs	Solenoid
Instability&Impendance	Yoke
Cooling	Muon Detector
Shielding	Hall
Assembly&Supporting	BG Simulation&Shielding
Alignment	Software Geometry
Connecting System	Alignment&Assembly
Vacuum pumps	Electronics
Last Bending Magnet	Cryogenic
Collimators	Radiation Protection
Control	Booster

D. Wang

	tt	Higgs	W	Z
Bhabha Lifetime (min)	80	40	60	85
<i>Quantum Lifetime (lattice+BB+BS)</i> (min)	78	40	45	100
<i>Touschek Lifetime</i> (hour)	1404	119	30	6
<i>Vacuum Lifetime</i> (hour)	24	14	8	5
Beam-gas scattering (hour)	122	16	9	5.2
Beam-gas bremstrahlung (hour)	60	207	222	552
Beam-gas electron scattering (hour)	165099	340963	167888	215395
Beam-gas electron bremstrahlung (hour)	62	221	247	565
<i>Quantum Lifetime</i> (hour)	1014	1012	10 ⁹	10 ¹⁵

The range between 2 cryostat chambers would be -1.11m~1.11m

SR from solenoid combined field

- Horizontal trajectory will couple to the vertical
- Due to the sol+anti-sol field strength quite high, maximum~4.24T, transverse magnetic field component is quite high.
- SR from vertical trajectory in sol+anti-sol combined field should be taken into account.

Maximum: 670keV

- SR fan is focused in a very narrow angle from
 - -116urad to 131urad
- SR will not hit Berryllium pipe, and no background to detector.
- SR will hit the beam pipe ~213.5m downstream from IP
- Water cooling is needed.

