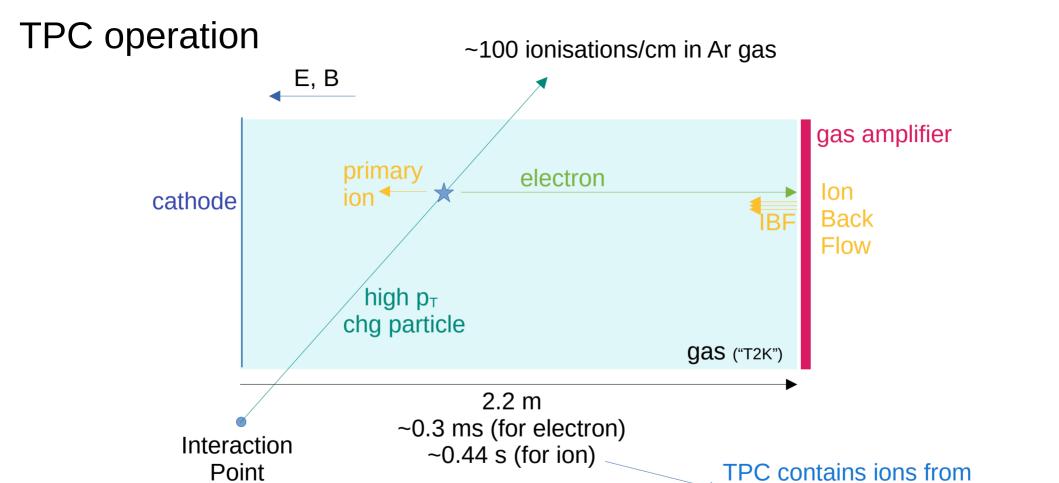
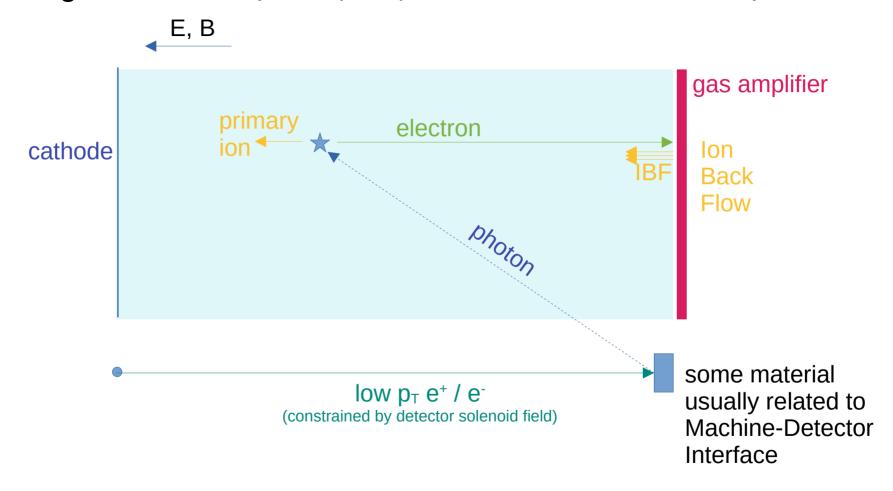


Beamstrahlung backgrounds in ILD at ILC and FCCee



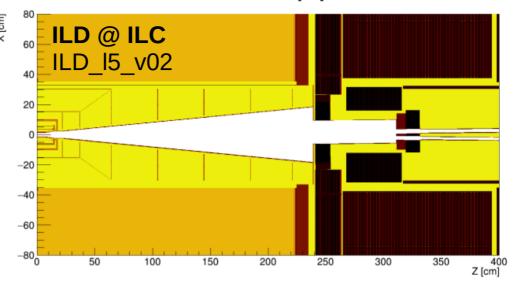
Beamstrahlung : many low $p_T e^+ e^-$ pairs produced in each bunch crossing

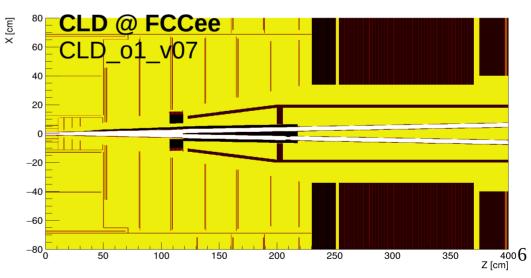
A. Schuetz arXiv:1801.04156


(b) *ILC250 set (A)*

collisions up to 0.44s earlier

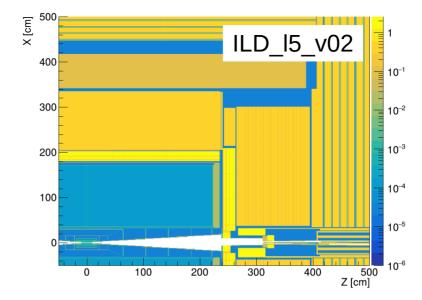
4


beam backgrounds: usually small $p_T \rightarrow particles$ do not reach TPC directly

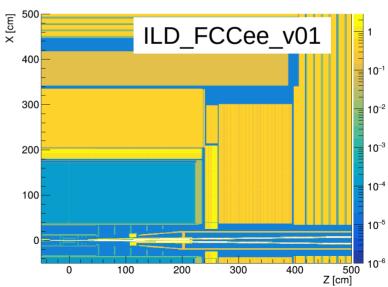


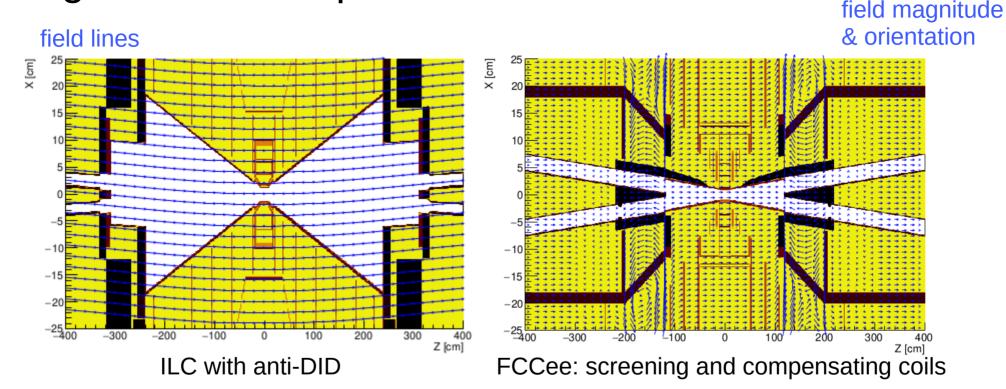
Machine-Detector Interface

is significantly different @ ILC and FCCee


	ILC	FCCee
crossing angle	14 mrad	30 mrad
L* [distance from IP to last accel focusing quadupole magnet]	4.1 m	2.0 m
detector solenoid	3.5 T	2.0 T
additional B-fields	anti-DID (?)	compensatingscreening

new models of ILD for FCCee


Work In Progress with V. Schwan


common MDI: MDI_o1_v00

vertex, inner tracker adapted from CLD_o1_v07

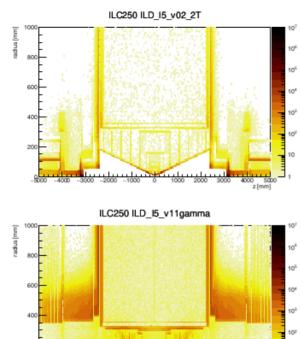
remainder from ILD

magnetic field maps

beamstrahlung: many very low p_T e+e- created in bunch collisions

very different bunch structure, materials and fields in the forward region

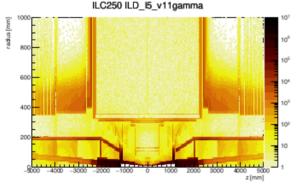
→ major effect on beamstrahlung backgrounds?


GuineaPig: program to simulate beamstrahlung

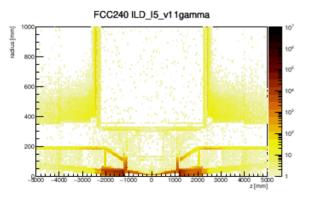
```
beamstrahlung pairs @
ILC-250 (from ILD/Mikael Berggren)
FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)
```

simulate in various DD4hep ILD detector models: using ddsim/DD4hep/Geant4 some special parameters to correctly track low p_⊤ particles

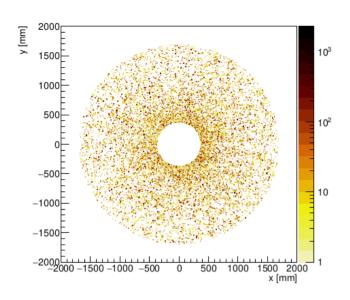
```
ILD @ ILC :
uniform 3.5T
uniform 2.0T
field map with and without anti-DID
```


ILD @ FCCee :
uniform 2.0T
field map for central region

MC particle endpoints in 100 BX


ILC250 beamstrahlung

ILC-like detector


ILC250 beamstrahlung

FCC-like detector

FCC-240 beamstrahlung

FCC-like detector

→ geant4 energy deposit / effective ionisation potential of Ar [26 eV]

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150

large variations between bunch crossings

beamstrahlung much weaker @ FCCee

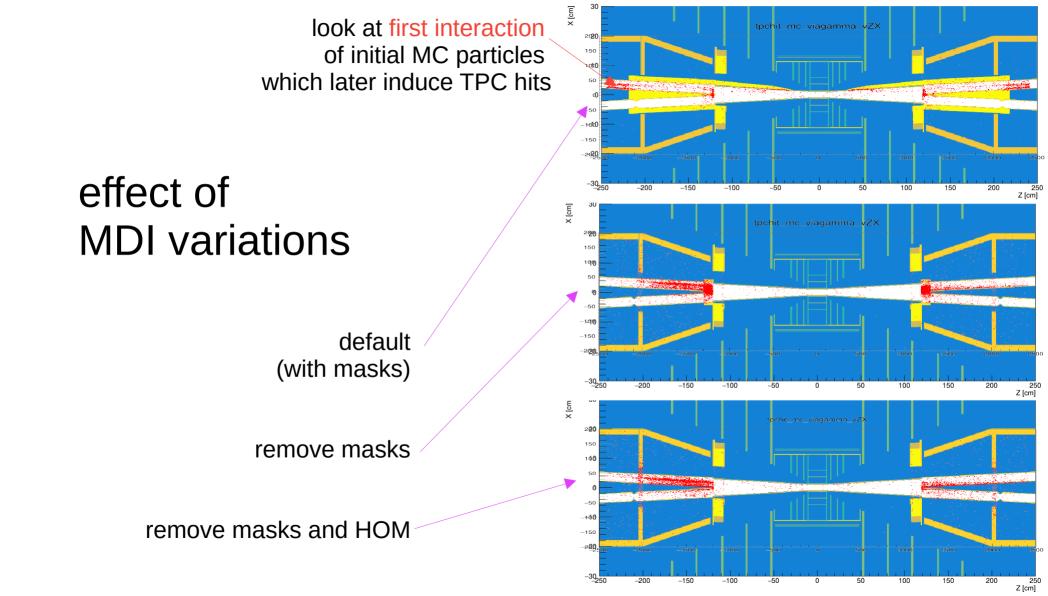
→ bunches less focused

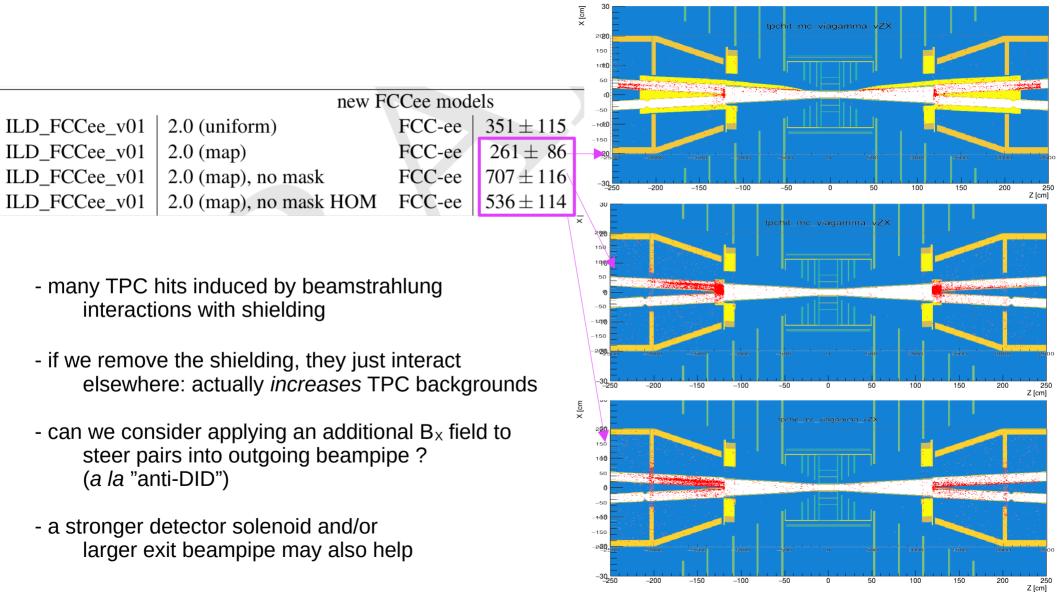
			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300

reducing field to 2T has modest effect at FCCee, large effect at ILC

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
				$mean \pm RMS$	
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110

anti-DID reduces TPC background by factor ~2 at ILC-250 4~10 at FCCee


			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
new FCCee models					
ILD_FCCee_v01	2.0 (uniform)	FCC-	ee 351 ± 11	5 987 ± 155	111000 ± 2100
ILD_FCCee_v01	2.0 (map)	FCC-	ee 261 ± 8	$66 823 \pm 180$	100000 ± 2100


FCCee MDI system induces ~50x increase in TPC activity compared to ILC

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
new FCCee models					
ILD_FCCee_v01	2.0 (uniform)	FCC-	ee 351 ± 11	$5 987 \pm 155$	111000 ± 2100
ILD_FCCee_v01	2.0 (map)	FCC-	ee 261 ± 8	6 823 ± 180	100000 ± 2100

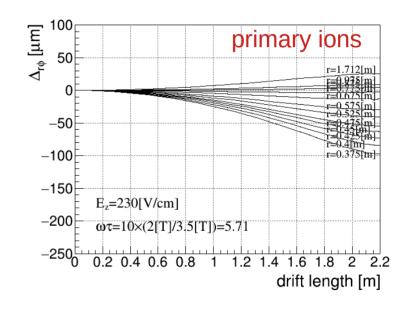
"realistic" situations : a few 100k → 1M primary ions / BX

ILC and FCCee are similar

TPC integrates over many collisions; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (~42 m³) at any time, taking account of different collision rates

number of ions ~ primary ions/BX * BX freq * max drift time * 50% [some ions already reached cathode]


Collider	FCC-91	FCC-240	ILC-250
Detector model	ILD_FCCee_v01	ILD_FCCee_v01	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	260 k	820 k	450 k
primary ions in TPC at any time	1.7×10^{12}	1.4×10^{11}	6.5×10^{8}
average primary ion charge density nC/m ³	6.4	0.54	0.0025

primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250

how does this compare to other sources of primary ionisation?

- e⁺ e⁻ → q q @ 91 GeV : ~1 M primary ions per event @ ~50 kHz [FCCee] → 10¹⁰ primary ions in TPC at any time cf. 2x10¹² from beamstrahlung @ FCCee-91
- $e^+ \ e^- \to q \ q \ @ \ 91 \ GeV :$ primary ions give rise to maximum drift distortions in R-phi of ~100 µm seem stable @ few-micron level

beamstrahlung background seems \sim 200 times more severe than $e^+e^- \rightarrow q q$

using naive scaling, maximum distortions due to beamstrahlung (primary ions only) → 20 mm

compare to ALICE-TPC

ALICE TPC upgrade TDR: CERN-LHCC-2013-020

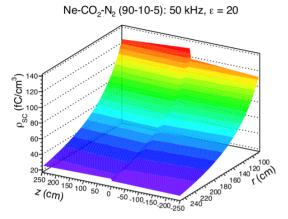
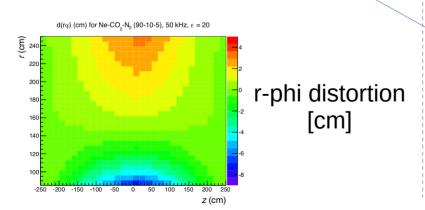
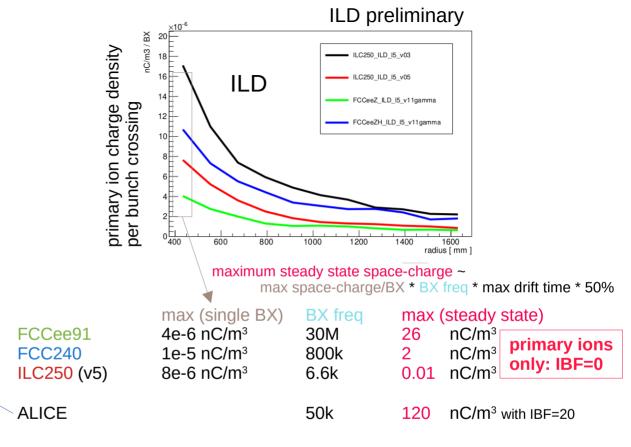




Figure 7.7: Average space charge density for Ne-CO₂-N₂ (90-10-5), $R_{int} = 50$ kHz and $\varepsilon = 20$. assumed ion back flow factor ε : 20 secondary ions / primary

20~120 fC/cm³ → cm-level distortions

TPC at FCCee91 with IBF of 3~5

→ similar space-charge as at ALICE

O(1~10) cm max distortions
consistent with our "first-principles" estimate

Summary

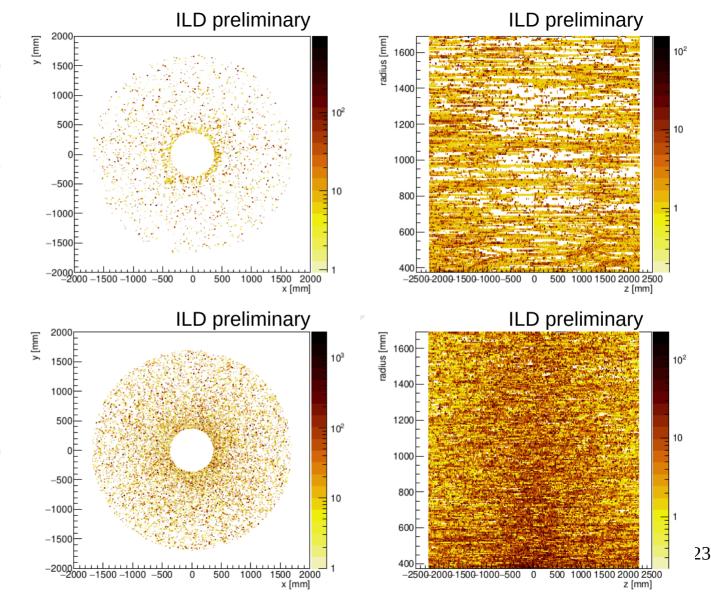
TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee

interplay between stronger beamstrahlung @ ILC more intrusive MDI @ FCCee

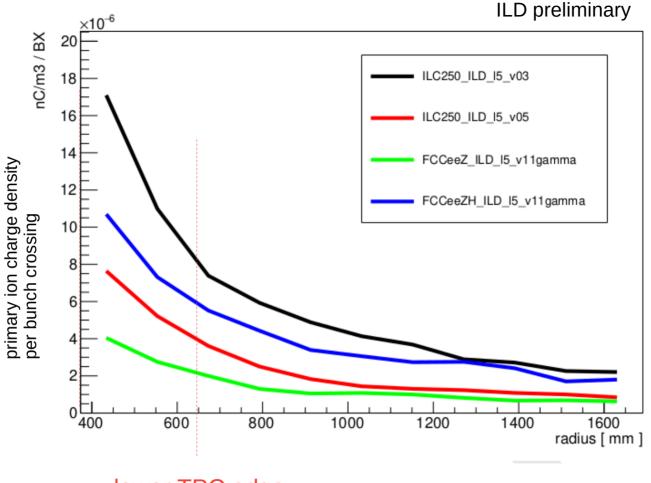
average BX frequency: 4.5k times higher at FCCee

→ TPC integrates over many more BX

TPC ions from **beamstrahlung** dominate those from ee → qq @ FCCee-91


distortions in a TPC at FCCee-91 with Ion Back Flow (gas gain * back flow probability) ~ 4 looks similar to ALICE-TPC

- → will need distortion corrections, constrained by silicon hits
- → still some work to demonstrate feasibility of TPC to reach performance goals for the full tera-Z phase of a circular collider such as FCCee


backup

TPC hits superimpose 100 bunch crossings

ILD_I5_v11y @ FCCee-91

ILD_l5_v03 @ ILC-250

lower TPC edge in "small TPC" option