

Background analysis of CEPC vertex detector

Author: Hancen LU, Zhijun LIANG, Haoyu SHI, Chengdong FU, Wei WEI, Ying ZHANG, Tianyuan ZHANG

Reporter: Hancen LU

Intro: CEPC VXD

High-precision vertex detectors are crucial for the realization of the CEPC physics goals

- Flavor physics (a large number of b/c quark jets, τ leptons)
- Higgs physics ($H \rightarrow bb/cc/gg$ and $H \rightarrow \tau \tau$)

Goal: $\sigma(IP) \sim 5\mu m$ for high P track

CDR design specifications

- Single point resolution ~ $3\mu m$
- Low material (0.15% X₀/Layer)
- Low power (< $50 \text{mW}/cm^2$)
- Radiation hard (1 Mrad/year)

Intro: CEPC VXD

To meet the design specifications and enhance performance, VXD has undergone multiple iterations in various aspects such as geometric structure.

Composite(Ladder + Stitching)

Intro: VXD Geo

Geometry during data generation
Slight differences

Newest geometry

These differences have minimal impact on the results

	Layer	Radius(OldGeo)/mm	Radius(NewGeo)/mm		
Ŗ -	1	11.39	12.20; 12.70		
	2	13.53	19.20; 19.70		
)	3	26.63	25.90; 26.40		
	4	29.67	32.90; 33.40		
	5	43.51	44.10		
	6	47.15	47.74		

Composite(Ladder + Stitching

Cylindrical

٠

Each layer is relatively scattered

- Staggered Ladder
- Series of modules
- Two layers attached together
- Nearly cylindrical

10/24/24

Result: Higgs HitRate NewGeo

Total entries: 2611449 (2000Evt*10BX*355ns)@(53%Gap) Max hit rate: 2.451 MHz/sensor

Layer	A hit rate MHz/sensor	M hit rate MHz/sensor	A hit density MHz/cm2	M hit density MHz/cm2
1	1.983	2.451	0.496	0.613
2	0.378	0.842	0.090	0.200
3	0.098	0.196	0.023	0.047
4	0.044	0.153	0.010	0.035
5	0.015	0.108	0.004	0.033
6	0.010	0.070	0.003	0.021

A for average, M for maximum.

Result: Higgs HitRate OldGeo

Result: OldGeo vs. NewGeo

Institute of High Energy Physics, Chinese Academy of Sciences

10/24/24 Old Geo: Staggered Ladder

New Geo: Composite(Ladder + Stitching)

7

Cluster Size

- Cluster Size should be approximately proportional to the track length.
- The sensor is of uniform thickness
- Sensor can be regarded as planar on the order of a few pixels

 $C = a \sec \theta + b$

C is the Cluster Size, and θ is the incident angle

Result: Higgs DataRate NewGeo

Take 32 bit / PixelSignal:									
1.99 1.97 2.16 2.28	- 325 - 330	Vaild	Ts_chip Co		olumn	Rov	N	Pattern	Total
200 134 197 2.85	- 2.75 00000000 - 2.50 00	1 bit	8 bit	9 bit		10 b	oit	4 bit	32 bit
109 134 340 531 108 340 334 234 11 12 12 12 12	-2.50	Layer	A Data ra Mbps/sens	te sor	M Data Mbps/s	a rate sensor	A D Mk	Data rate ops/cm2	M Data rate Mbps/cm2
823 825 927 828 944 128 828 828 933 847 648 133	-14	1	493.01	8	652.	018	12	23.255	163.004
0.24 0.25 0.23 0.31 0.44 1.00 0.35 0.16 0.20 0.26 0.37 4.44 0.39 0.24 0.20 0.22 0.33 0.39	-12 -18 Percent	2	70.927		116.668		1	6.887	27.778
a20 a19 b20 635 638 632 a38 b19 b20 b22 b33 634 a37 b18 b20 b27 b36 b39	- 68 Ž - 68	3	18.845		47.790		2	1.487	11.379
6.39 6.23 0.26 0.29 0.08 0.09 139 6.23 0.26 0.29 0.48 0.49 139 130 131 131 131 134	-63	4	9.144		51.128		2	2.078	11.620
0.01 0.04 0.05 0.08 0.09 0.11 0.01 0.04 0.07 0.08 0.01 0.11 0.15 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 <td>-14</td> <td>5</td> <td colspan="2">3.363</td> <td colspan="2">33.700</td> <td></td> <td>1.026</td> <td>10.284</td>	-14	5	3.363		33.700			1.026	10.284
600 004 011 118 12 12 601 604 614 614 614 614 514 601 604 617 618 618 618 514 601 604 617 618 618 618 514 601 618 618 618 618 618 618 618 606 619 617 618 <t< td=""><td>- 43 Филония чи - 62</td><td>6</td><td>1.920</td><td></td><td>14.7</td><td>796</td><td>(</td><td>).586</td><td>4.515</td></t<>	- 43 Филония чи - 62	6	1.920		14.7	796	().586	4.515
883 8.04 9.04 8.05 6.06 8.07 8.07									

A for average, M for maximum.

Result: HitRate vs. DataRate

Institute of High Energy Physics, Chinese Academy of Sciences

10

Summarization of data

Institute of High Energy Physics, Chinese Academy of Sciences

Layer	Inner/outer	A hit rate MHz/sensor	M hit rate MHz/sensor	A hit density MHz/cm2	M hit density MHz/cm2	A Data rate Mbps/sensor	M Data rate Mbps/sensor	A Data rate Mbps/cm2	M Data rate Mbps/cm2
OldGeo DataRate = HitRate * 32bit / pixel * 3pixel / hit @(53%Gap)									
	i	1.622	2.164	0.495	0.660	155.718	207.736	47.521	63.396
1	0	1.150	1.790	0.351	0.546	110.407	171.799	33.694	52.429
2	i	0.074	0.201	0.022	0.061	7.074	19.281	2.159	5.884
2	0	0.044	0.116	0.014	0.035	4.248	11.127	1.296	3.396
2	i	0.012	0.041	0.004	0.013	1.164	3.940	0.355	1.202
3	0	0.009	0.029	0.003	0.009	0.842	2.777	0.257	0.848
NewGeo DataRate = HitRate * 32bit / pixel * ClusterSize @(53%Gap)									
1	١	1.983	2.451	0.496	0.613	493.018	652.018	123.255	163.004
2	١	0.378	0.842	0.090	0.200	70.927	116.668	16.887	27.778
3	١	0.098	0.196	0.023	0.047	18.845	47.790	4.487	11.379
4	١	0.044	0.153	0.010	0.035	9.144	51.128	2.078	11.620
5	١	0.015	0.108	0.004	0.033	3.363	33.700	1.026	10.284
6	١	0.010	0.070	0.003	0.021	1.920	14.796	0.586	4.515

No/frigger and error window here.

A for average, M for maximum.

Occupancy

Z-axis

Layer	Maximum Occupancy@Pixel (e-5/BX)	Average Occupancy@Pixel (e-5/BX)	Occupancy @Sensor (%/BX)
1	2.266	1.813	67.813
2	0.505	0.336	19.031
3	0.189	0.091	5.717
4	0.175	0.041	2.678
5	0.191	0.020	0.966
6	0.117	0.014	0.676

@Pixel refers to the proportion of pixels that are fired on each sensor within each bunch crossing

@Sensor indicates the proportion of sensors that are fired on each layer within each bunch crossing

φ

10/24/24

60

13

Future Plan:

.

- By incorporating the reconstruction process, we comprehensively analyze the particle trajectories within the sensor to obtain reliable hit data.
- Connect AllPix-2 with CEPCSW for digitization.

.

Size 1.9⊢ DESY Dec. Data 4 GeV e Cluster 3 1.8 modified Allpix² Simulation **1.7**E 1.6 1.5 1.4 1.3 **1.2** 1.1⊨ 1<mark>⊑___</mark>292 330 368 432 491 600 Threshold ξ [e]

Cluster Size Total from@AP2 $a = 0.91 \pm 0.00$ $b = 0.39 \pm 0.01$

 $R^2 = 0.9846$

Siz

Cluster

Cluster Size from@Beam Test ITHR3 a = 0.77 ± 0.06 b = 0.95 ± 0.17

20

Weakness:

- Merging of every simulation step is primitive.
- The estimation of cluster size is based on an empirical model.
- Trigger and error window are not yet taken into • consideration.

Weakness & Future Plan

Institute of High Energy Physics, Chinese Academy of Sciences

Cluster Size: AP2 v.s. Beam Test@Thick18um,BiasVolt-0.2V,ITHR32

40 θ(°)

Thanks for Your Attention!