FPGA acceleration for HLT1 at LHCb

Ao Xu (许傲)

CEPC Workshop 2024

October 24, 2024

Need for speed

- Progress of experiments goes together with increasing bandwidth
- Flavour physics at low $p_{\rm T}$ is most demanding ($\sigma_b \sim 10^{4/7} \sigma_{Z/H}$)
 - LHCb tops the chart despite smaller size and lower luminosity
 - Increasing $\mathcal{L}(t)$: $\mathcal{L}_{Run5} = 7.5 \times \mathcal{L}_{Run3/4} = 7.5 \times 5 \times \mathcal{L}_{Run1/2}$
 - LHCb is effectively "processing-limited"

[EPJ Plus 138 1005 (2023)]

LHCb Data Processing model in Run 3

- Triggerless readout of whole detector + full event reconstruction
 - No inefficient hardware trigger on simple quantities (e.g. p_{T} , E_T)

- Two-level trigger system
 - HLT1 (GPUs): full track reconstruction for trigger purpose
 - HLT2 (CPUs): full detector reconstruction and final physics selection
- Alignments performed between HLT1 and HLT2

Evolving towards primitive-based reconstruction

Pre-EB: reconstruct intermediate data structures (*primitives*)

- Clusters, track segments *etc*.
- Locally embedded in the detector: looks like "Raw" data to DAQ
- Accelerate HLT reconstruction and reduce data flow at the source
- Challenges: no time-multiplexing, little buffering
- Solutions
 - ASICs (on detector): e.g. CMS track vectors
 - FPGAs (off detctor): for more complex primitives

LHCb Run 3 tracking system and sequence

- Current HLT1 reconstructions focus on Long tracks
 - Run 2 based on Forward tracking
 - Run 3 benefits also from Matching
- Add Downstream tracks to HLT1
 - Expand the LHCb physics program
- FPGA acceleration at pre-build level
 - VELO clustering: established as default method at LHCb
 - T-track primitives: approved enhancement for Run 4

Hits in the VELO pixel detector

- Hits in VELO detector appear as 2D clusters of pixels
- Firmware deployed in Run 3 in FPGA readout boards (Arria 10) to make clusters on the fly
 - Pixels read out as 2 × 4 arrays (SuperPixels, SP)
 - Clusters found by unpacking them into active matrices, where each pixel actively checks if it belongs to a pattern
 - Centroid evaluated by LUTs
 - Dynamically allocate small matrixes where active pixels are found

Performance of embedded cluster finding

Quality of real-time clustering as good as CPU algorithm

- 14% BW reduction: raw pixel information dropped and replaced by hit positions during readout
- 11% throughput increase and 1/50 power consumption
- Enable opportunities for further applications (*e.g.* precision monitoring of beamline): real-time availability of 10¹1 hits/s in accessible way

- DoWnstream Tracker will provide HLT1 with pre-formed T-track primitives in LHCb Run 4
 - Make room for Downstream tracking and other desirable enhancements
- Artificial retina architecture: highly-parallel architecture for pattern recognition
 - High throughput and low latency
 - Extreme parallelism and high connectivity
 - Computation similar to Hough transform
- Implemented in an array of FPGAs
 - Each board specialised to reconstruct a portion of parameter space
 - Each board processes each event
 - Connection between boards through a custom network

LHCb Scintillating Fibre Tracker

- **Three** tracking stations: T1, T2, T3
- Each consists of four detection planes: oriented $(0^{\circ}, +5^{\circ}, -5^{\circ}, 0^{\circ})$
 - Modules have 2.5 m long scintillating fibres with a diameter of $250\,\mu m$ read out by SiPMs
 - Measurements of the co-ordinates (x, u, v, x)

Reconstruction of axial T-track primitives

- 1. Axial (x-z plane) track parametrisation
 - $(\tilde{x}_0, \tilde{x}_{11})$: *x*-coordinates at the first and last SciFi layer
 - # of pattern cells for SciFi: 2×73k
- 2. Weight accumulation

•
$$w = \sum_{hits} \exp\left(-\frac{(x_l - t_l)^2}{2\sigma}\right)$$

for $|x_l - t_l| < d_s$

- Identification of local maxima (axial track primitives)
 - Maximum above threshold in the centered 3 × 3 cluster

Ghost removal with axial track fit

- Linearised χ^2 fit for false maxima removal
- Parabolic model with cubic correction [1, 2]
 x(z) = a_x + b_x × z + c_x × z² × (1 + dRatio × z)
- For each local maximum determine the best fit over combinations of
 - 5 different axial layers out of 6
 - 1 out of 2 candidate hits on each layer

Reconstruction of 3D T-track primitives

- 1. Stereo (*y*-*z* plane) track parametrisation
 - \tilde{y} : y-coordinate at the middle of SciFi
 - # of bins per axial track: 45
- 2. u/v hits distribution
 - Good axial track candidate ↔ Binned parametric space

CEPC Workshop 2024

 $x_{\mathsf{pred}, u/v} \xrightarrow{x_{\mathsf{pred}, u/v} - y \times \tan \alpha} x_{\mathsf{meas}, u/v}$

- 3. Identification of local maxima (stereo track primitives)
 - Maximum above threshold in 1D histogram

Ghost removal with stereo track fit

- Linearised χ^2 fit for false maxima removal
- Straight line: $y(z) = a_y + b_y \times z$
- For each local maximum determine best fit over combinations of
 - 5 different stereo layers out of 6
 - 1 out of all candidate hits on each layer
- 3D track primitives filtered with (χ^2_A, χ^2_S) requirement
 - Linear cut for illustration of performance

- Input from detector over multiple lines
- Distribution network
 - Switch: routes hits only to appropriate cells
 - Optical communication: exchanges hits between boards
- Cell
 - Engine: computes and accumulates hit weights
 - Max-finder: finds tracks (local maxima)
- Primitive tracks are sent to the Event Builder

Performance of of T-track at primitive

- Efficiency above 90% for high-momentum tracks
- Good efficiency for low-momentum ($p < 5 \,\mathrm{GeV}$) tracks
 - Essential for downstream tracks ($K_{\rm s}^0$ and Λ)

Robust scaling with occupancy

Throughput gain with DoWnstream Tracker

HLT1 sequence hlt1_pp_matching

Throughput in RTX A5000 (kHz)

- Default sequence
 - Total (T-track reconstruction): $7.2 \,\mu s \, (1.5 \,\mu s)$
- With T-track primitives from DWT
 - Total (Primitives decoding and refitting): $5.4 \,\mu s \, (0.06 \,\mu s)$
- Throughput increased by a factor of 1.33

Throughput scalability

Event rate scales linearly with instantaneous luminosities

- Luminosities obtained by merging events
- Event rate scales linearly with system size

Resources and integration in LHCb Run 4 DAQ

- Number of FPGAs: 64 (axial) + 32 (stereo)
- DWT Boxes (up to 6 FPGA each) connected to SciFi EB nodes
- Modular, scalable, and minimal disturbance to current DAQ

Hardware demonstrator with live LHCb Run 3 data

- A complete demonstrator installed and currently Running parasitically at the LHCb TestBed facility (Point 8)
- Smooth long-term operation without errors
- Tracks from demonstrator show very similar distribution to HLT2 reconstruction output

- Two major efforts of FPGA acceleration at LHCb
 - VELO cluster finding: established as the default method in Run 3
 - DoWnstream Tracker: approved as part of LHCb DAQ Enhancement in Run 4
- Increase throughput and decrease power consumption
 - Performance as good as software algorithms
- R&D ongoing for LHCb Run 5

BACKUP

LHCb RETINA team

Wander Baldini^{1,2}, Giovanni Bassi^{3,4}, Andrea Contu⁵, Riccardo Fantechi³, Jibo He^{6,7}, Brij Kishor Jashal⁸, Sofia Kotriakhova^{1,9}, Federico Lazzari^{3,10}, Maurizio Martinelli^{11,12}, Diego Mendoza⁸, Michael J. Morello^{3,4},
 Arantza De Oyanguren Campos⁸, Lorenzo Pica^{3,4}, Giovanni Punzi^{3,10}, Qi Shi⁶, Francesco Terzuoli^{3,13}, Giulia Tuci¹⁴, Ao Xu³, Jiahui Zhuo⁸

¹ INFN Sezione di Ferrara, Ferrara, Italy

² European Organization for Nuclear Research (CERN), Geneva, Switzerland

³ INFN Sezione di Pisa, Pisa, Italy

⁴ Scuola Normale Superiore, Pisa, Italy

⁵ INFN Sezione di Cagliari, Monserrato, Italy

⁶ University of Chinese Academy of Sciences, Beijing, China

⁷ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China

⁸ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

⁹ Università di Ferrara, Ferrara, Italy

¹⁰ Università di Pisa, Pisa, Italy

¹¹ INFN Sezione di Milano-Bicocca, Milano, Italy

¹² Università di Milano Bicocca, Milano, Italy

¹³ Università di Siena, Siena, Italy

¹⁴ Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany

Performance with simulation

LHCb simulation with Run 3-4 condition

•
$$\sqrt{s} = 14 \text{ TeV}$$
, bunch 25 ns, $\nu = 7.6$

• Samples: Minimum Bias, $D^0 o K^0_{
m s} \pi^+\pi^-$, $B^0_s o \phi \phi$

- DoWnstream Tracker emulator
 - C++ software emulator of an FPGA-based system for reconstruction of T-track primitives
 - Use integers to emulate the firmware implementation at bit-level
- Indicators: efficiency and ghost rate

Performance of T-track at primitive level

- \blacksquare Fiducial requirements: $p_{\rm T} > 200 \, {\rm MeV}$ and $2 < \eta < 5$
- Efficiencies comparable with <u>GPU-HLT1</u> and CPU-HLT2 Seeding
 - Higher efficiencies could be achieved with looser χ^2 requirements
- Ghost rate is under control
 - As a reference: below 15% (6%) for GPU-HLT1 tracking

Track type	MinBias	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$B_s^0 \to \phi \phi$
Long, $p > 3 \mathrm{GeV}/c$	85 (86)	83 (84)	84 (85)
Long, $p > 5 \mathrm{GeV}/c$	90 (91)	89 (90)	89 (89)
Long from B not e^{\pm} , $p>3{ m GeV}/c$	-	-	88 (87)
Long from B not e^{\pm} , $p > 5~{ m GeV}/c$	-	-	90 (90)
Down, $p > 3 \text{GeV}/c$	84 (85)	83 (84)	83 (84)
Down, $p > 5 \mathrm{GeV}/c$	89 (91)	88 (89)	88 (89)
Down from strange not e^\pm , $p>3{ m GeV}/c$	-	83 (83)	-
Down from strange not e^\pm , $p>5{ m GeV}/c$	-	88 (88)	-
Down from strange not long not e^\pm , $p>3{ m GeV}/c$	-	83 (83)	-
Down from strange not long not e^\pm , $p>5{ m GeV}/c$	-	88 (89)	-
ghost rate	16 (10)	17 (12)	17 (13)
ghost per real track	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)

Event-averaged values shown in brakets

Physics performance of axial T-track primitives

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \,\mathrm{GeV}$

- Number of pattern cells for SciFi: 2×73k
- Efficiencies comparable with CPU-HLT2 Hybrid Seeding and GPU-HLT1 Seeding
- Ghost rate about 35% (25%) \implies 0.5 (0.4) fake track for each real track

For reference 22% of	(axial-only) GPU-H	LT1
----------------------	--------------------	-----

Track type	$\varepsilon(MinBias)$	$\varepsilon(D^0 \to K^0_S \pi^+ \pi^-)$	$\varepsilon(B_s^0 \to \phi \phi)$ [%]
T-track, $p > 3 \text{ GeV}$	83 (85)	82 (83)	83 (84)
T-track, $p > 5 \text{ GeV}$	90 (91)	89 (90)	88 (89)
Long, $p > 3 \mathrm{GeV}$	86 (87)	84 (85)	85 (86)
Long, $p > 5 \mathrm{GeV}$	91 (92)	90 (91)	89 (90)
Long from B not e^{\pm} , $p>3{ m GeV}$	-	-	89 (88)
Long from B not e^{\pm} , $p>5{ m GeV}$	-	=	92 (91)
Down, $p > 3 \mathrm{GeV}$	85 (86)	83 (84)	84 (85)
Down, $p > 5 \mathrm{GeV}$	90 (91)	89 (90)	89 (90)
Down from strange not e^{\pm} , $p>3{ m GeV}$	-	83 (83)	-
Down from strange not e^{\pm} , $p > 5 { m GeV}$	-	89 (89)	-
ghost rate [%]	32 (22)	35 (28)	35 (27)
ghost per real track	0.5 (0.3)	0.5 (0.4)	0.5 (0.4)

Event-averaged values are shown in parenthesis

Definition of efficiency and ghost rate

Event-integrated quantity

$$\begin{split} \varepsilon &\equiv \frac{\sum_{i} n_{\text{tracks,matched}}^{i}}{\sum_{i} n_{\text{tracks,reconstructible}}^{i}} \\ \text{ghost rate} &\equiv \frac{\sum_{i} n_{\text{tracks,reconstructed}}^{i}}{\sum_{i} n_{\text{tracks,reconstructed}}^{i}} \\ &= \sum_{i} \frac{n_{\text{tracks,reconstructed}}^{i}}{\sum_{i} n_{\text{tracks,reconstructed}}^{i}} \times \frac{n_{\text{tracks,unmatched}}^{i}}{n_{\text{tracks,reconstructed}}^{i}} \end{split}$$

Event-averaged quantity

$$\varepsilon \equiv \sum_{i} \frac{1}{N_{\rm evt}} \times \frac{n_{\rm tracks,matched}^{i}}{n_{\rm tracks,reconstructible}^{i}}$$
ghost rate
$$\equiv \sum_{i} \frac{1}{N_{\rm evt}} \times \frac{n_{\rm tracks,unmatched}^{i}}{n_{\rm tracks,reconstructed}^{i}}$$

Physics performance (axial): effciency VS momentum

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \, {\rm GeV}$

Physics performance (axial): efficiency VS η and ϕ

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \,\mathrm{GeV}$

FPGA architecture

- Programmable logic blocks (CLB) linked by programmable interconnections (SM)
- Programmable Input and Output (I/O)
- More than a million of CLB and a thousand of I/O

Track reconstruction: general concepts

- Pattern recognition: partition of signals (detector measurements) into disjoint sets (track candidates)
 - Local method: select one track candidate at a time
 - Global method: all hits enter the algorithm in the same way
- Track fitting: determination of track parameters considering multiple scattering and energy loss

Hardware demonstrator

- All individual components tested in 10 years R&D
- A complete demonstrator installed and currently Running parasitically at the LHCb TestBed facility (Point 8)
 - Implemented in 8 PCIe-hosted FPGA cards
 - Reconstruct a VELO quadrant
 - Monitoring Farm provides to the TestBed facility events @ 1 kHz
 - Online LHCb alignment constant applied on the fly

- RTA proposal in the Framework TDR for the LHCb Upgrade II
- Dedicated workshop on 27/02/2023
- LHCb public note (LHCb-PUB-2024-001) submitted to U2PG and RTA on 24/10/2023
- LHCb internal U2PG review from 24/10/2023
- RTA endorsement on 30/11/2023
- LHCb TDR for LS2 enhancement submitter to LHCC on 27/02/2024