

Introduction of Asphase-II Global Trigge and Contractions of the second states of the second

Outline

- Brief introduction on LHC and ATLAS
- Brief introduction on Trigger concept
- ATLAS Global Trigger for Phase-II Upgrade
- Global Common Module (GCM) design
- Summary

ACC C CCCC

Large Hardon Collider

- Circumference ~27km
- Nominal energy, protons 7 Tev, 99.9999991% of *c*
- Magnetic dipole field 8.3T, 100,000 times of earth's

A Toroidal LHC ApparatuS

- ~180 institutes, >3000 authors
- Total detector channels ~100,000,000

• Total data volume generated by ATLAS

Brookhaven[®] National Laboratory

- Collision rate 40MHz x 100 million channels ~ 4x10¹⁵ bytes/s
- Trigger concept
 - The role of the trigger is to select bunch collisions containing potential interesting physics
 - What is "interesting"?
 - Define what is signal and what is background
 - Which is the final affordable rate of the DAQ system?
 - Define the maximum allowed rate

Multi-level trigger concept

- Adopted in large experiments, successively more complex decisions are made on successively lower data rates
 - First level with short latency, working at higher rates
 - Higher levels apply further rejection power, with longer latency (more complex algorithms)

Fine Complex Slow

Original ATLAS TDAQ Architecture

• Level 1 trigger

cilities Council

 Rapid rejection of high-rate backgrounds

Brookhaven

National Laboratory

- Fast custom electronics
 - Real-time @40MHz
- Coarse calorimeter info
- High lever trigger
 - Event selection
 - Software running on computer farm
 - Access to full event data
 - Full granularity
 - Full precision

Very successful

- Higgs boson discovery 2012
 - ATLAS together with CMS

Higgs \rightarrow 2mu2e

The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

LHC Luminosity profile and pileup

μ=20 10/24/2024

µ=65 W. Qian - CEPC Workshop

W. Qian - CEPC Workshop

ATLAS TDAQ Phase-II Architecture

• LO Trigger

Science & Technology Facilities Council

- Real-time
 - 10 µs latency
 - 1 MHz trigger rate
- LOCalo, LOMuon, CTP
- Global Trigger
 - Running complex full event algorithms inside FPGA at real time

Brookhaven

National Laboratory

- E.g. TopoCluster algorithm
- Similar to phase-I offline algorithms running on PC farm

Global Trigger system overview

- Maximize physics potential by concentrating full event data onto single processing unit
 - Inputs from LAr, Tile, L0Calo, L0Muon at 40 MHz

Brookhaven[®]

National Laboratory

- ~ 50 Tb/s into Global Trigger
- Data aggregation to single node with time multiplexing
- Object-level and event-level reconstruction and analysis
- Outputs to Central Trigger Processor for final decision
- Readout on L0 Accept to FELIX

- Different functions implemented in firmware
 - Common hardware platform
 - The Global Common Module

nce & Technology ities Council

Global Trigger system realization

- Three-layer system with synchronous interface to rest of ATLAS
 - Nominal 49 node MUX layer
 - captures incoming data from Calorimeters, LOCalo and MuCTPi every BC and streams consecutive events to Global Event Processors in turn
 - Nominal 49 node GEP layer
 - each node receives a new event every 49 BC, performs trigger algorithms, streams results to gCTPi interface
 - Single node gCTPi interface
 - receives list of trigger items from Global Event Processors and sends results to CTP every BC with fixed latency
 - Interconnected by full mesh optical fibre exchange

13

GCM prototype v3

• Main Features

nce & Technology lities Council

- ATCA form factor
- AMD/Xilinx Versal Adaptive SoCs
 - 1 versal premium VP1802 for MUX node
 - 1 versal premium VP1802 for GEP/gCTPi node
- Samtec Firefly 25Gx12ch optical modules

Brookhaven

National Laboratory

- 8 for GEP/gCTPi node
- 12 for MUX node
- 240 optical links in total
- Power design capacity 540W
 - 1 PIM4328/ 1 BMR458 (-48V/12V)
 - 7 LTM4681/1 LTM4638 (POL)
- Clock chips
 - 2 Si5395A
- 26-layer PCB with backdrill and via-in-pad technology
- Ultralow loss PCB material EM890K

Science & Technology Facilities Council

AMDE

Brookhaven[®] National Laboratory

VP1802 FPGA

• The top-of-the-range AMD/Xilinx versal premium

		VP1002	VP1052	VP1102	VP1202	VP1402	VP1502	VP2502	VP1552	VP1702	VP1802			
	System Logic Cells (K)	833	1,186	1,575	1,969	2,233	3,763	3,738	3,837	5,558	7,352			
Adaptable Engines	LUTs	380,800	542,080	719,872	900,224	1,020,928	1,720,448	1,708,672	1,753,984	2,540,672	3,360,896			
	NoC Master / NoC Slave Ports	22	22	30	28	42	52	52	52	76	100			
	Super Logic Regions (SLRs) ⁽¹⁾	-	-	-	-	-	2	2	2	3	4			
	Distributed RAM (Mb)	12	17	22	27	31	53	52	54	78	103			
	Block RAM (Mb)	19	26	49	47	70	89	89	89	132	174			
	UltraRAM (Mb)	97	138	127	190	181	366	366	366	541	717			
Memory	Multiport RAM (Mb)	80	80	-	-	-	-	-	-	-	-			
Wiemory	Total PL Memory (Mb)	208	261	198	264	282	508	507	509	751	994			
	DDR Memory Controllers	2	2	3	4	3	4	4	4	4	4			
	DDR Bus Width	128	128	192	256	192	256	256	256	256	256			
Intelligent	DSP Engines	1,140	1,572	1,904	3,984	2,672	7,440	7,392	7,392	10,896	14,352			
	AI Engines Tiles	-	-	-	-	-	-	472	-	-	-			
Lingines	AI Engine Data Memory (Mb)	-	-	-	-	-	-	118	-	-	-			
	APU	Dual-core Arm [®] Cortex [®] -A72, 48KB/32KB L1 Cache w/ parity & ECC; 1MB L2 Cache w/ ECC												
Scalar	RPU	Dual-core Arm Cortex-R5F, 32KB/32KB L1 Cache, and 256KB TCM w/												
Engines	Memory	256KB On-Chip Memory w/ECC												
	Connectivity		Ethernet (x2); UART (x2); CAN-FD (x2); USB 2.0 (x1); SPI (x2); I2C (x2)											
Corial	GTY Transceivers (32.75Gb/s)	20	20	-	-	-	-	-	-	-	-			
Serial	GTYP Transceivers (32.75Gb/s)	-	-	8	28 ⁽²⁾	8	28(2)	28 ⁽²⁾	68 ⁽²⁾	28 ⁽²⁾	28(2)			
Transceivers	GTM Transceivers (58G (112G))	24 (12)	48 (24)	64 (32)	20 (10)	96 (64) ⁽³⁾	60 (30)	60 (30)	20 (10)	100 (50)	140 (70)			
	PCIe [®] w/DMA & CCIX (CPM4)	2 x Gen4x4	2 x Gen4x4	-	-	-	-	-	-	-	-			
	PCIe w/DMA & CCIX (CPM5)	-	-	-	2 x Gen5x8	-	2 x Gen5x8	2 x Gen5x8	2 x Gen5x8	2 x Gen5x8	2 x Gen5x8			
Integrated	PCI Express	1 x Gen4x8	1 x Gen4x8	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	2 x Gen5x4	8 x Gen5x4	2 x Gen5x4	2 x Gen5x4			
	100G Multirate Ethernet MAC	3	5	6	2	6	4	4	4	6	8			
Protocorip	600G Ethernet MAC	2	3	7	1	11	3	3	1	5	7			
	600G Interlaken	1	2	0	0	0	1	1	0	2	3			
	400G High-Speed Crypto Engine	1	1	3	1	4	2	2	2	3	4			

Power Design

- Worst-case scenario (540W)
 - FPGA ~ 200 W each
 - FireFly ~ 100 W (for 20 modules)
 - Misc ~40 W
- 10 POL DC-DC for ~20 power rails
 - 7 LTM4681
 - 1 LTM4638
 - 2 TPS74801
 - 1 TPS51200
- Independent and symmetric power solution for MUX and GEP
- Two ADM1066 for power sequencing

PCB technology

- Material: EM890K, Halogen free. •
- Total thickness 2.65mm ± 0.2 mm, milled down on bottom edge
- **5 Backdrill** (stub less than 8 mil):
 - L26 L23, DO NOT BREAK L22
 - L26 L21, DO NOT BREAK L20
 - L26 L19, DO NOT BREAK L18
 - L26 L17, DO NOT BREAK L16
 - L26 L12, DO NOT BREAK L11
- Minimum via for non-backdrill: 8 mil hole / 18 mil pad ٠
- Minimum via for backdrill: 8 mil hole /22mil pad ٠
- **IPC Class II** ٠

cience & Technology cilities Counci

Impedance tolerance ± 10% for 50/93/100 ohm ٠

	ST	ACK UP DETAILS - 26 LAYERS [NOT TO SCALE]	
SOLDERMASK		TODOLOU	
LOOZ CU FOL (HTE)	LOI	TOP SIGNAL	77
3.35 ML PP 1078 RC69			4
0.5 0Z Cu HVLP2	minin	GROUND	22
2.99 ML CORE 1x1078		DOWED	4
LOUZ CU HVLP2	minin	FOWER	
3.0ML PP1078R069	1 01	CROUND	4
2.99 ML CORE 1x1078	minin		
0.50Z Cu HVLP2	L05	SIGNAL 1	9
2.93 ML PP 1078 R069			
0.5 0Z Cu HVLP2	L06	GROUND	"
2.99 ML CORE 1x1078			
0.50Z Cu HVLP2	L07	SIGNAL 2	
2.93 ML PP 1078 RC69			
0.5 0Z Cu HVLP2	108	GROUND	
2.99 ML CORE 1x1078			
0.50Z Cu HVLP2	LOY	SIGNAL 3	72
2.93 ML PP1078 H069			4
0.502 CU HVLP2	1111	GROUND	72
2.99 ML CONE 1x10/8	1 11	SICNAL A	
2.81ML PP1078RC69	innn.		
LOOZ CU HVLP2	1 12	GROUND	1
2.99 ML CORE 1x1078			
2.00Z Cu RTF	L13	POWER	
4.99 ML 2XPP 1080 RC55			104 MIL BML
2.0 0Z Cu RTF	L14	POWER	
2.99 ML CORE tx1078			
LOOZ Cu HVLP2	L15	GROUND	
2.8IML PP1078R069			
2004 008 1078		SIGNALO	
2.55ML CORE (KU76	117	CROLIND	
2 OTHE DEVOTRECEO	minne		
0.50Z Cu HVLP2	1 18	SIGNAL 6	
2.99 ML CORE 1x1078	Minne.	Millinninninninninninnin in the	
0.50Z Cu HVLP2	L19	GROUND	
2.93 ML PP 1078 R069		W/////////////////////////////////////	
0.5 0Z Cu HVLP2	L20	SIGNAL 7	
2.99 ML CORE 1×1078			
0.5 0Z Cu HVLP2	121	GROUND	
2.93 ML PP 1078 RC69			
0.5 0Z Cu HVLP2	minim	SIGNAL 8	
ZING ML CORE 1x1078		CPOLIND	
0.502 Cu HVLP2	minin		
1007 Cu HVL P2	124	POWER	1
2.99 ML CORE 1x1078	minin	antintationananana eo eo eo eo	
0.50Z Cu HVLP2	L25	GROUND	1
3.35 ML PP 1078 RC69			
100Z Cu FOL (HTE)	L26	BOTTOM SIGNAL	
SILKSCREEN SOLDERMASK			

17

PCB Design Methodology

High-speed, high-power and high-density board

Brookhaven[®]

National Laboratory

- Too many rule of thumbs
 - Sometimes conflicting each other
 - Impossible to follow all of them
- Compatibility to standards
 - Maximize margins
- Help understand and debug
- Goal
 - Reducing the number of board iterations
 - Dream first time pass

• How

Science & Technology Facilities Council

- Simulation integrated into design flow
 - Iterative processes
- Validation of simulation
 - Integrated PCB test coupon
 - Special test launch points

Brookhaven[®]

National Laboratory

 https://iopscience.iop.org/article/10.1088/1748-0221/19/02/C02049/pdf

 Xilinx Crosstalk

Requirement for CEI-28G-VSR

– Rx-Rx

Science & Technology Facilities Council

- <-40dB
- GCM Rx-Rx
 - Majority
 - <-42dB
 - But one
 - ~32dB
 - Optimization
 - Swapping routing layers

Before optimization

After optimization

Link Test Results - 25.7 Gb/s NRZ

- All optical links error free with good margin
 - BER < 1E-15

• 8 on-board electric GTM links between MUX and GEP

Brookhaven

National Laboratory

- 4 Tx from MUX to GEP
- 4 Tx from GEP to MUX

Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		TXUSERCLK Freq	RXUSERCLK Freq	Inject Error	TX Reset	RX Reset	RX PLL Status	TX PLL Status	Loopback Mode		TX Main-Cursor	
😑 Ungrouped Links (0)																						
S Link Group 0 (8)							Reset	PRBS 31	~	PRBS 31	~			Inject	Reset	Reset			None	~	User Design	~
% Link 0	IBERT_5.Quad_118.CH_0.TX	KIBERT_7.Quad_204.CH_0.R	X 60.891 Gbps	3.238E13	0E0	3.088E-14	Reset	PRBS 31	~	PRBS 31	×	380.566	380.566	Inject	Reset	Reset	Locked	Locked	None	~	User Design	×
% Link 1	IBERT_5.Quad_118 CH_1.T)	X IBERT_7.Quad_204.CH_1.R	X 60.891 Gbps	3.238E13	0E0	3.088E-14	Reset	PRBS 31	¥	PRBS 31	×	380.493	380.566	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~
% Link 2	IBERT_5.Quad_118.CH_2.T/	KIBERT_7.Quad_204.CH_2.R	X 60.891 Gbps	3.236E13	0E0	3.09E-14	Reset	PRBS 31	~	PRBS 31	~	380.566	380.493	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~
% Link 3	IBERT_5.Quad_118.CH_3.T/	KIBERT_7.Quad_204.CH_3.R	X 60.879 Gbps	3.233E13	0E0	3.093E-14	Reset	PRBS 31	4	PRBS 31	~	380.493	380.566	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~
% Link 4	IBERT_7.Quad_204.CH_0.TX	KIBERT_5.Quad_118.CH_0.R	X 60.891 Gbps	3.232E13	0E0	3.094E-14	Reset	PRBS 31	~	PRBS 31	×	380.566	380.566	Inject	Reset	Reset	Locked	Locked	None	×	User Design	×
% Link 5	IBERT_7.Quad_204.CH_1.TX	KIBERT_5.Quad_118.CH_1.R	X 60.891 Gbps	3.232E13	0E0	3.094E-14	Reset	PRBS 31	~	PRBS 31	~	380.566	380.566	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~
N Link 6	IBERT_7.Quad_204.CH_2.TX	KIBERT_5.Quad_118.CH_2.R	X 60.891 Gbps	3.231E13	0E0	3.095E-14	Reset	PRBS 31	~	PRBS 31	v	380.566	380.566	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~
% Link 7	IBERT_7.Quad_204.CH_3.T/	KIBERT_5.Quad_118.CH_3.R	X 60.879 Gbps	3.23E13	0E0	3.096E-14	Reset	PRBS 31	~	PRBS 31	~	380.566	380.556	Inject	Reset	Reset	Locked	Locked	None	~	User Design	~

Science & Technology Facilities Council

ence & Technology ilities Council

Power/Thermal stress test

- Worst Case scenario
 - Both FPGA firmware resource usage 70% + 22 GTM Quads

Brookhaven

National Laboratory

- ATCA Fan Level 10
- Total power: 402W
 - MUX 152 W
 - GEP 144 W
- Temperature:
 - MUX 77 °C
 - GEP 65 °C
 - All Firefly modules below 50 °C
 - All power modules < 55 °C
 - Inlet airflow on board 32 °C
 - Outlet airflow on board 46 °C

Next step

- Slice test with 5 GCMv3 modules at CERN
 - To demonstrate the data flow through the slice (10%) system

Summary

- ATLAS TDAQ phase-II upgrade will be installed during the LHC LS3 in preparation for the High-Luminosity LHC era.
- The new Global Trigger is the core of the real-time L0 trigger of ATLAS TDAQ phase-II upgrade.
- The Global Trigger is based on FPGA farm of three layers.
 - MUX, GEP and gCTPi
- A full function Global Common Module prototype has been developed to support the functionalities of all nodes in all three layers with different firmware loads.
- GCM is a state-of-the-art high-speed high-density high-power ATCA board designed with a systematic methodology.
- 5 GCM prototype modules have been made and achieved first time pass successfully.

Backup

VP1802 GT mapping

Brookhaven[®] National Laboratory

Multipleser					Global	Event Processor			gCTP4								
-	100 -	Para .	to real state	- tes		-		Para .	IS SAFT SAFT IS	PHONE D	ï	Contract State	and and	5 100 Date	an and	5 LAP	
SLR 3		206 El 56 Apart 200	0- 00- 00- 00- 00- 00- 00- 00- 00- 00-				1111111111111	208 Lifer boot 200		108 V/M fluid 108			28 Photost 23 Photost	11111	the second secon		
		074 Qual 233 074 Qual 233 074 Qual 233	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	COLUMN CONS.		SLR.		00 994 Sual 23 996 Sual 220		SAPH N	SLR.		709 9754 3448 228 8754 8648 228		THE SHE		
		278 2794 Quart 278 2794 Quart 270	00 00 00 00 00 00 00	10 10 10 10 10 10 10 10 10 10 10 10 10 1			222222222222222222222222222222222222222	23 0 N Sol 25 0 N Sol 20		State Creat			12 10 2		Efficient 18 Efficient 10		
SLR 2		ar W Qual 204 ar W Qual 205		identical 338 10erclash 10		SLR 2	111111111111	EN Sul 25		STM right 208 STM Canel 305	SLR 2		278 278 278 278 278 278 278 278 278 278		Utterpad 128 Ethiopad 125		
	1111111	24 874 (544) 254	are 561				TELET.	23 8780 Scal 235		_		20000	218 979/5140 218				
		ETV Could FT		111 111	1111111			and based and based and based		274 Gual 272 274 Gual			Children (Children (Childr		filmigaat 100 filmigaat 100		
SLR 1		170 A		(00-044 (00-044	111111	SLR 1	SLR 1	- 110	20 Sul 20 20 20 20 20 20 20 20 20 20 20 20 20		38 5.4 (PN	SLR 1		en put		100 concern	
		ITV Guid ITV Guid ITV Guid ITV Guid						28 28 CN Lost					IN Stat				
SLRO		arts busi		CT Last				and Sunt		unter			STM Sand 200		ATT Sand	A B B	
		CTM (peak 200		onione giorige				GN boat	New York New York New York New York	STATES.			STM Real		ETHOM Sherote		
	2222	arti Gual 286		Constitute		SLR	11111	Chi Suni 200			SLR	CI III	STM Barel 308		ATNONE Visual VIX		
	111111	20 CTYQue 20 CTYQue	100 825 100 825 100 807 100 807	Gast (III	-		222232	III Coal		Barri 93			arcast arcast	11111 Funos	Gard 100	2	

Optical fibre full mesh exchange

A 60 MUX nodes to 60 GEP nodes full mesh optical fibre exchange can be constructed from above COTS product easily.

Global firmware MUX/gCTPi

Brookhaven

National Laboratory

Global firmware GEP framework

Brookhaven

National Laboratory

Algorithms on Global Trigger

- Combine FEX TOB seeds with full calorimeter cell information above 2 σ noise cut
 - Full calorimeter event-based
 - jets using topoclusters, finer calibration and a closer approximation to anti-k_T jets
 - jet substructure, E_T and E_T^miss
 - RoI-based
 - e/γ using strips and finer granularity to calculate shower shape E_ratio or BDT
 - Tau using strips and topoclusters
 - wide area around electron and tau for background for isolation (eFEX 0.3×0.3 in $\eta \times \phi$)

Global GEP firmware floor plan

Brookhaven

National Laboratory

W. Qian - CEPC Workshop

Global firmware management

- Release Management and Continuous Integration based on <u>HoG</u>
 - Guarantees reproducibility and traceability (even locally!)
 - Continuous Integration with minimal additional effort
 - multiple Release branches plus develop branch

Brookhaven

National Laboratory

- automatic checking of software and firmware register maps
 - version and SHA cross-checked and written in XMLs and firmware
 - critical for achieving reliability in complex system!

https://hog.readthedocs.io/en/latest/#

nce & Technology ties Council