Versal FPGA based development for HEP

Yun-Tsung Lai

KEK IPNS

ytlai@post.kek.jp

The 2024 International Workshop on the High Energy Circular Electron

Positron Collider

24th Oct., 2024

2024/10/24

- Introduction to our organization and the Versal project
- Progress on fundamental studies.
 - PAM4 data link, PCIe, AI engine, DPU.
- HLS, ML, AI engine: roadmap of FPGA methodology
- International collaborations
 - TYL/FJPPN: Japan-France collaboration project
 - DRD7.5a

- Collide Electronics Forum (CEF):
 - Within Instrumentation Technology Development Center (ITDC) of KEK IPNS.
 - Motivated to provide a platform of common development on the electronics devices with new technologies for future collider experiments.
 - Established by M. Tomoto-san, M. Tanaka-san and Y. Ushiroda-san in 2022, mainly within E-sys, Belle II, and Energy Frontier groups of KEK IPNS.
 - Research proposal from each group can be made and discussed. Then the works of the project will be shared with the members in the forum.
- We will also promote the collaboration with other experimental groups.
 - Communication with SPADI-A: Unified DAQ system design for nuclear experiments in Japan.
- Our activities can be found at https://kds.kek.jp/category/2369/
- Core members: from ATLAS, E-sys, Belle II and ALICE/EIC
 - ATLAS: M. Tomoto (KEK), K. Nagano (KEK), J. Maeda (Kobe), Y. Horii (Nagoya)
 - E-sys: R. Honda, M. Tanaka, Y.-T. Lai
 - Belle II: T. Koga, S. Yamada, Y. Ushiroda (KEK)
 - ALICE/EIC: T. Gunji (CNS)

Application of FPGA in HEP experiments

• Belle II Central Drift Chamber (CDC):

Application of FPGA in HEP experiments (cont'd)

Data Link

Data Link

• **Our target:** Study the latest COTS FPGA devices and their associated new technologies for possible application and upgrade in different aspects of HEP experiments.

FPGA

(FEE)

Hardware acceleration:

High-level

- Not only CPU, but also GPU and FPGA.
- Acceleration on softwarebased calculation.

- FPGA FPGA transmission:
 - Optical link with FPGA MGT and optical modules.
 - Non-Return-to-Zero (NRZ).
 - Different encoding based on protocol design purposes.
 e.g. 8B/10B and 64B/66B.
 - <10 Gbps for DAQ.
 - <25 Gbps for TRG.

- Strong FPGA devices with:
 - Larger number of cells.
 - Larger data bandwidth.

are critical for the usage in:

- **TRG**: complicated algorithm implementation.
- **DAQ**: collect and process large data.

FPGA

(Trigger)

FPGA

(Readout)

- **FPGA server transmission:**
 - Data transmission and system slow control.
 - GbE, PCI-express, VME, etc.
 - PCI-Express is the most popular one nowadays: PCIe40 in ALICE, LHCb, and Belle II.

L1 Trigger system

- For TRG purpose, complicated algorithm is implemented to process detector raw data in real-time.
- Larger number of cells: improve the logic itself, resolution of triggering, and reduce the background rate.

Belle II TRG boards

Trigger device for Belle II and ATLAS

- For TRG purpose, complicated algorithm is implemented to process detector raw data in real-time. Utilization of machine-learning in the logic design became a trend recently.
- Strong FPGA with large resource: improve the logic itself, resolution of triggering, reduce the background rate, and perform everything within a latency limit.

Belle II UT3

ATLAS Muon Trigger processor

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Xilinx UltraScale+ XCVU13P XCZU5EV GTH,GTY: 16.8 Gbps with 64B/66B

DAQ system

 Readout: PCIe has been the most popular solution for electronics → server interface.

PCIe40: PCIe Gen3

HLT (Belle II)

- HLT: Computing servers with reconstruction software.
 - In Belle II: HLT software = offline software.
- How about the options other than CPU?
 - GPU?
 - FPGA hardware acceleration?

source: Qi-Dong Zhou, Shandong Univ.

System Processing power / HLT unit Price (¥) / HLT unit Ratio CPU (Intel Xeon E5 2660) 480 cores 18,000,000 ~6.5 GPU (GeForce RTX 3090) 12 GPU GPU : CPU ~ 40 : 1 GPU: ~180,000 x 12 = 2,160,000 ~1.5 FPGA (VCK5000, Versal 5 FPGA card Versal : CPU FPGA card : ~300,000 x 5 = 1,500,000 1		Sottware	Hardware FPGA
CPU (Intel Xeon E5 2660) 480 cores 18,000,000 ~6.5 GPU (GeForce RTX 3090) 12 GPU <u>GPU : CPU ~ 40 : 1</u> GPU: ~180,000 x 12 = 2,160,000 Server: 600,000 x 3 = 1,800,000 Total : 3,960,000 ~1.5 FPGA (VCK5000, Versal 5 FPGA card Versal : CPU FPGA card : ~300,000 x 5 = 1,500,000 Server: 600,000 x 2 = 1	Sing / HLT Price (¥) / HLT unit Ratio it		
GPU (GeForce RTX 3090) 12 GPU <u>GPU : CPU ~</u> <u>40 : 1</u> GPU: ~180,000 x 12 = 2,160,000 Server: 600,000 x 3 = 1,800,000 Total : 3,960,000 ~1.5 FPGA (VCK5000, Versal 5 FPGA card Versal : CPU FPGA card : ~300,000 x 5 = 1,500,000 Server: 600,000 x 2 = 1	ores 18,000,000 ~6.5		E VITIS.HLS E VITIS.
FPGA (VCK5000, Versal FPGA card : ~300,000 x 5 = 1,500,000 Versal 5 FPGA card Versal : CPU Server: 600,000 x 2 = 1	GPU: ~180,000 x 12 = 2,160,000 2PU ~ 2,160,000 Server: 600,000 x 3 = ~1.5 1 1,800,000 Total : 3,960,000	er Program plication solution	Translate into Start fitter Evaluat Verilog/VHDL FPGA language Event Filtering Full event
ACAP ~ 100 : 1 1,200,000 VC1902) Total : 2,700,000	FPGA card : ~300,000 x 5 = 1,500,000 CPU Server: 600,000 x 2 = 1,200,000 Total : 2,700,000	er Buffer	building real-time Al Tracking, PID FPGA/GPU Simulation data

New technologies for TDAQ in HEP

• FPGA device:

• COTs, ACAP, SoC, such as Xilinx Versal, RFSoC, etc.

• High-speed serial data transmission:

- From Non-Return-To-Zero (NRZ) to Pulse-Amplitude-Modulation (PAM4)
- Optical module: QSFP, FireFly, other EOM.
- Data readout:
 - PCI-Express: PCIe40 (Gen3), PCIe400 (Gen5), FELIX (Gen4), Versal (Gen5)
 - Ethernet
- Algorithm in FPGA:
 - High-Level-Synthesis (HLS), ML inference, etc.
 - Xilinx Versal AI engine
- Hardware acceleration:
 - Xilinx Versal and Alveo acceleration card, Deep Processing Unit (DPU)
 - GPU

Versal project @ CEF

- Our project is mainly based on the Xilinx Versal series of ACAP.
- KEK together with Japanese HEP community purchased a few evaluation kits.
 - Plan: Common and general studies on the new technologies for future electronics device's R&D. Now we plan to use Versal for L1 TRG, DAQ or HLT purpose.
- The features of different Versal series ACAP:
 - AI engine: convenient interface to implement ML core into firmware.
 - High Bandwidth Memory (HBM).
 - Larger number of cells + High transmission bandwidth.

source: Xilinx website

2024/10/24

Versal project: General plan

- Our goal: R&D of a new general FPGA device using the Versal ACAP.
 - A L1 TRG, DAQ, or HLT device, and also general for different experiments.
 - One clear target is UT5 for L1 TRG of both Belle II and ATLAS.

Test benches of Versal kits @ KEK E-sys

- Now we have both VPK120 and VCK190 test benches at KEK E-sys group with host servers.
 - They are opened and shared with our colleagues in CEF.

PC side: PCIe Gen5 x16 slot

PC side: PCIe Gen4 x8 slot

VPK120 test bench: 2023 summer

VPK120 connection to Belle II UT4 VCK190 test bench: 2024 March

New technology in Versal FPGA: PAM4, PCIe, AI engine

- Pulse Amplitude Modulation (PAM4):
 - Four distinct voltage levels to break through the limit of Non-Return-to-Zero (NRZ), which is ~25 Gbps.
 - Using VPK120 to study it.
 - Suitable for high-speed link in L1 TRG. Hope to be pioneer to use it in future TRG board.
- PCle Gen5:
 - PCIe has been popular option in HEP.
 - ALICE, LHCb and Belle II has been using PCIe40 (Gen3).
 - Study the properties of newer generation of PCIe is beneficial for the future readout device's development.
 - Using VPK120.
- Al engine: A new technology for data processing.
 - Help for our algorithm construction in TRG.
 - C programmable.
 - Together, we study many options of HLS and ML inference in FPGA, and their performance in different TRG algorithms.
 - Using VCK190.

2024/10/24

Limit: ~25 Gbps

PAM4 (Pulse Amplitude Modulation)

Four distinct voltage levels. Two bits per clock cycle.

4 levels

Data transmission with VPK120

- GTYP: PCIe 5.0 (16) and FMC+ (8)
 - 1.25 ~ 32.75 Gb/s.
 - Various encoder supported.
 - Tested with the dual QSFP28 FMC module from HitechGlobal company.
- GTM: QSFPDD (8*2)
 - NRZ:
 - 9.5 ~ 15, 19 ~ 29 Gb/s.
 - PAM4:
 - 19 ~ 30, 38 ~ 60 Gb/s
 - 76 ~ 112 Gb/s: "Half density mode" by combining two lanes.
 - No encoding is supported. Need to be make them manually in RTL.
 - Tested with QSGP-DD-SR8 from FS company.

Dual QSFP28 FMC

Protocol development and connection test

- For GTM, we made a new generalized protocol with raw mode (no encoding).
 - Similar logic to my Belle II TRG protocol design.
 - (de)scrambler for DC balance.
 - Tested to be stable for both NRZ and PAM4.
- Using this new generalized protocol, connection test (25 Gbps x4, NRZ) between Belle II UT4 and VPK120 has been also tested. Stable in few hours.

Yun-Tsung Lai (KEK IPNS) @ 2024 CEPC workshop

2024/10/24

Transmission test with PAM4 and QSFPDD

- We have successfully tested the real transmission with PAM4 and QSFPDD:
 - QSFPDD-SR8 with MPO16, from FS company.
 - 53.125 Gb/s x 16 lanes.
 - Only this line rate is supported.
- 3-day BERT, Our self-designed protocol, PRBS16:
 - BER of the worst lane: 9.0 x 10⁻¹⁴
 - 16-lane combined BER: 6.7 x 10⁻¹⁵
 - Latency: 210~240 ns

Based on our experience, NRZ is usually O(10⁻¹⁶)

This BER for PAM4 looksl acceptable.

٠

Optical transceiver

- R&D on the new trigger device UT5 is our target, so the options on hardware spec. is important.
 - QSFPDD with MPO-16 is one of the options: 8 pairs of link, so save the space on the circuit.
 - Also, QSFP56 with MPO-8 can be considered: still 4 pairs.
 - To use PAM4, only a fixed data rate is supported.
- Samtec company: FIrefly connector:
 - New product supporting PAM4. Will be released soon.
 - Mainly NRZ products.
- AlOcore company @ Tokyo:
 - Embedded Optical Module.
 - PAM4 version: under development
 - E-sys group has collaboration with them.
 - Interested in its radiation hardness, and connection to other modules.

PCIe-CPM test with Versal kits

- CPM-PCIe example from Xilinx: XTP712
 - CPM: building block design for PCIe with integrating DMA, CIPS, NOC, etc.
 - PCIe Gen4 x8: GTYP links are up. 16 Gbps per lane.
- Driver software: QDMA, also a Xilinx IP.

	187
	VPK120
A CONTRACTOR	Gen5 x 16
and the second sec	VCK190 Gen4 x 8

2024/10/24

							DDDMC								
Hardw	/are			7 <u>–</u> U	G X D	DRMC - DDRMC_	I X DDRMC -	DDRMC_2 ×							
u :	Ŧ	$\blacksquare P \Vdash$	» 🔳		0	Status					Margins Anal	ysis			
Name		Re Ound 102	(4)	Status		Status Status	s Registers				Table Chart	(Fred	0) - Left Aligned	Char	t (Freq 0) -
		Pa CH 0	(4)	15 997 Ghne		Namo	DDRMC 2				0 ≚ ≜	ps	Read Mode v	Simple	Pattern N
		Ren CH 1		15.987 Gbps		Name:	DDRMC_2				4 ¥ ¥	P	Iteau mode +	Jimpie	accenti
		Pa CH 2		15.97 Gbns		Calibration Statu	us: PASS				Name		Left Margin (taps	s) (enter Poir:
		Ba CH 3		15.954 Gbps	_	DDRMC Status:	GOOD				✓ Freq 0				
		V Bit Ouad 103	(4)	15.554 6665		Gate Tracking St	tatus: Running				 Byte 0 				
		Ph CH 0		15 973 Ghns	- 11 11	Message:	No errors (detected during c	alibra	tion.	NIDDIE U			61	
		Ph CH 1		15.963 Gbps	- 11 1	Error:		····· , ···			Nibble 1			01	
		Pet CH 2		15.98 Gbps	- 11 11						V Byte 1			60	
		Pa CH 3		15.984 Gbps	- 111						Nibble 0			62	
		DDRMC_1 (LPI	DDR4) (x0y0)	PASS	- 11						v Bute 2			01	
		DDRMC 2 (LPI	DDR4) (x1y0)	PASS	_	Calibration					Nibble 0			62	
		DDRMC_3		DISABLED	~	Stage				Status	Nibble 1			62	
c					>	% CAL_STAGE.01_	F0_PHY_BISC			% Pass	✓ Byte 3				
Proper	rtic	e		2	E Y	~ CAL_STAGE.02	FU_MEM_INIT			No Pass	Nibble 0			61	
rope	. ue	-		r U	- ·	~ CAL_STAGE.03	FU_LPDDR4_CS_CA	A_TRAIN		10 Pass	Nibble 1			60	
				\leftarrow \rightarrow	•	CAL_STAGE.04	FU_DQS_GATE_CAL			N Pass	✓ Byte 4				
						% CAL_STAGE.05	FU_WRITE_LEVELIN	16		10 Pass	Nibble 0			64	
		Select an obje	ect to see pro	perties		~ CAL_STAGE.06	FU_READ_DQ_CAL			∿ Pass	Nibble 1			64	
	_														
Tcl Cor	nso	le Message	s Serial I/	O Links 🛛 🛛	Serial I/O S	cans									
0 3	×	▲ ↓													
ig i	•	DFE Enabled	Inject Error	TX Reset	RX Reset	RX PLL Status	TX PLL Status	Loopback Mod	e	Termination Voltage	RX Common Mode		TXUSERCLK Freq	RXUSER	CLK Freq
n	~	V	Inject	Reset	Reset			User Design	~	800mv ~	Programmable	~			
n •	~	1	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	499.512		499.292
n ,	~	<	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	499.512		499.292
n	~	✓	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	499.072		498.779
n ,	~	◄	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	499.292		499.438
n ,	~	V	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	498.413		499.365
n	~	◄	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	498.413		499.585
n ,	~	V	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	498.486		498.560
n 🚽	~	S	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Programmable	~	498.560		499.512
ot(a02 a02	20 20 20	cef01 000 001	linu» ((x-ker 3000: 3000:	nel]; 02:00 02:00	# ./bin 0.0 0.1	n/dma- max QI max QI	ctl de P: 8, 0 P: 0,	v 0~ -~	list 7 					
a02	20	002	(9000:	02:00	0.2	max Q	P: 0,	-~						
a02	20	003	(9000:	02:00	9.3	max O	P: 0,	-~						
ota	90	ef01	linu	x-ker	nella	# /hi	n/dma-	ctl ad	ma	02000 g	add ida	(0 dir b	o i	
	+1	· War		afaul	t mov	do cot	to Im	m'	nu	9 <u>2000</u> q		•			
- C		. war		aut		ue set	to m								
a02	20	900-MM	-0 H2	2C ad	ded.										
an	26	000-MM	-0 C	2H ad	ded										
002	-		0 02	-n uu	acu.										
ed		L Queu	es.												
ote	20	of01	linu	v-kor	nel la	# /hi	n/dma	ctl ad	ma	02000 a	start i	d	v 0 di	r hi	
	gu	CIOL	CTIIU)	- Kel	ne c]ł	7 ./DII	ny ullia - 0	eet qui	lia	02000 q	start 1	u,		- 01	
- C1	tl	.: Inf	0: De	efaul	t ri	na size	e set :	to 204	8						
		a ata	ntod	i dae	0	0	CALCOLOGIC -								
uel	ue	es sta	rted	, 1ax	0~	0.									
liei	IE	s sta	rted	idy	0~	Θ									
	ac 24	of01	linu	, Lun	nell	# /hi	n/dma	to dow	ic	a d /da	v/adma6	12	000 MM	0	c 2
	20 32	2 Aver	age	RW =	177 -	# ./DII 377688	KR/se	co-uev.	IC	e -u /ue	v/quillac	2	500-1111-	- 0 -	5 3
<u> </u>	52					# /b-		6	_		days (and a		2000	414	
	<u>-</u>			1000		# /h1	a/ama ·	Trom d	a 1 <i>1</i>		dev/adm	121	• 2 (• 1(• 1(•)) – N	AUM (*	-

[root@cef01 linux-kernel]# ./bin/dma-ctl qdma02000 q stop idx 0 dir bi

[root@cef01 linux-kernel]# ./bin/dma-ctl qdma02000 q del idx 0 dir bi

Stopped Queues $0 \rightarrow 0$.

Deleted Queues 0 -> 0.

size=32 Average BW = 132.445391 KB/sec

PCIe-CPM firmware: Event readout

- State machine of the readout protocol between PC and FPGA.
 - Basically, handshake between PC and FPGA to know when is ready, what is data size, and when to take data.
- Random data size in the data generator.
- · Not fully optimized yet: Long waiting time.

PCIe-CPM firmware: Event exchange

- A data exchange flow is also made for firmware and software.
 - For both MM and ST modes.
- 1 event in 1 event out.
- In order to test the algorithm core logic to be implemented in Versal kits.
 - We are going to integrate some algorithms together with this firmware framework to test.

Versal AI engine of VCK190

- Design flow with Vivado/Vitis: ٠
 - C++ programmable design for AI engine.
 - Integrated in PL design.

Study on implementation with AI engine

· We have tested with different algorithms implemented on AI engine

2024/10/24

Study on implementation with AI engine (cont'd)

• Simulation and firmware test.

FIR filter

Simulation for leNet

4-clock-cycle input

- I/O is based on AXI stream.
- Not exactly pipe-line.
- For a simple calculation:
 - Latency is 10~20 clock-cycles.
 - ~100 ns. (properly mainly I/O)
 - Core logic: processing clock is up to O(GHz).
- More studies will be done.

Vitis-AI with DPU

- VCK190 has another feature of Deep Learning Processor Unit (DPU), which is a a configurable computation engine dedicated to convolutional neural networks.
- The design flow does not involve Vivado for PL design. The device is utilized with a small operation system like a server, and works can be executed in it.
 - A higher-level application.

2024/10/24

Vitis-AI with DPU: test

- The environment with docker and DPU setup for VCK190 has been ready.
 - GPU quantization.
 - Image and video processing.
 - ATLAS top tagging open data.

Study by Chaowaroj "Max" Wanotavaroj (KEK IPNS)

VAIQ_NOTE]: Loading NNDCT kernels...

(vitis-ai-pytorch) vitis-ai-user@cef02:/workspace\$ python run_quantize.py calib

annot query video position: status=0, value=-1, duration=-1 XAIEFAL: INFO: Resource group Avail is created. XAIEFAL: INFO: Resource group Static is created. XAIEFAL: INFO: Resource group Generic is created. WARNING: Logging before InitGoogleLogging() is written to STDERR Camera video I1119 10:18:38.351377 1517 demo.hpp:752] DPU model size=224x224 I1119 10:18:38.392418 1517 demo.hpp:752] DPU model size=224x224 processing I1119 10:18:38.433463 1517 demo.hpp:752] DPU model size=224x224 I1119 10:18:38.474534 1517 demo.hpp:752] DPU model size=224x224 in DPU I1119 10:18:38.515609 1517 demo.hpp:752] DPU model size=224x224 I1119 10:18:38.556959 1517 demo.hpp:752] DPU model size=224x224 I1119 10:18:38.598032 1517 demo.hpp:752] DPU model size=224x224 I1119 10:18:38.639214 1517 demo.hpp:752] DPU model size=224x224

Algorithm making in FPGA: HLS, ML, AI engine

- Next step, we have many algorithms from Belle II, ATLAS, or so, to play in Versal kits.
 - Before that, let's think about the methodologies to do so.
- Considering algorithm implementation:
 - HDL logic in firmware.
 - HLS: software \rightarrow firmware.
 - ML inference
 - Al engine.

Depend on the different targets, our selection on FPGA differs. A strong FPGA? ACAP with AI engine? DPU?

- Not only the hls4ml, HLS tools has much more for ML and non-ML application.
 - Similarly, Versal AI engine requires a different design flow to make software/firmware.
- For this part of the work, we generalize the work plan into a roadmap in a technical perspective.

HLS, ML, AI engine: roadmap of FPGA methodology

- Not only what kind of algorithm to design, but also how to design it.
- As a member of KEK E-sys and CEF, we hope to understand the basic utilization on each, and build a database of such technical knowledge, to support our experimental colleagues.

HLS, ML, AI engine: roadmap of FPGA methodology

- We are recruiting young student to learn/work with us.
 - Now ~50% of the items have been covered.
 - We also plan to make a series of hand-on lecture for each of them.

Al engine course @ KEK E-sys, in Aug.

- We tried to hold a course about utilization the AI engine in this Aug. at KEK.
 - Attenders in Japan and other countries remotely.
 - All operations were done using local servers in our laboratory.
 - Almost everything is covered: environment setup, Vivado design flow, Vitis design flow, kernel making, Vitis simulation, hardware test.
- We will try to have more similar course on the other similar FPGA advance skills.

International collaborations

- European Committee for Future Accelerators hosted a Detector R&D Roadmap
 - ECFA DRD, where DRD7 is the Task-Force for electronics.
 - Our CEF Versal project joined the 7.5a working group: COTs for TDAQ backend.
 - Y-T. Lai (KEK E-sys) : co-convener of the 7.5a working group
- "Toshiko Yuasa" France Japan Particle Physics Laboratory (TYL-FJPPL):
 - Japan-France research collaboration
 - We have a project with IJCLab Orsay and CPPM Marseille
 - For advance FPGA device application and PCIe related study
 - PI: Y.-T. Lai (Japan) D. Charlet (France)

Project in TYL/FJPPN: SuperKEK BOR readout

- We plan to prepare a system to readout the waveform of • oscillation from the Bunch Oscillation Recorder (BOR)
 - Feature study for sudden beam loss issue. •
 - IDROGEN + ADC + WhiteRabbit.
- Work plan:
 - Optical data link
 - PCIe readout.
 - **IDROGEN** Oscillating waveform analysis, ML prediction + ADC
 - Using Versal and PCIe40 system.
- Collaborators: •

IDROGEN

Plan to put

+ WhiteRabbit

around here

Versal

PCIe40

D03V1

D03H1

D02H:

D02V1 D02H2

(planned in 2020)

readout (PCle or so)

D01H4 D01H51 D02H4 D02H3

TSUKUBA

SuperKEKB Main Ring

here

O(km)

D12H4

📫 D12V2 D12V1

D01

D01V1

DRD7.5a: TDAQ backend with COTs

WP7.4		
Extreme environments	 7.4a Device modelling and development of PDKs and IP 7.4b Radiation resistance of advanced CM 7.4c Cooling and cooling plates Overlap with DRD 	of cryogenic CMOS Harsh environments Harsh environments Dense heat general Dense heat general critical extraction 8 to be clarified*
WP7.5		torms survey and
Backend systems and	7.5a DAQOverflow	DAQ plaues implementation
COTS components	7.5b From FE to BE with 100GbE	References
WP7.6		Sime techn
Complex imaging ASICs	7.6a Common access to selected imaging	technologies effort on compare
and technologies	7.6b Shared access to 3D integration	Collaborative access framewor
		IP blocks

From Francois Vasey, the 3rd DRD7 Workshop

DRD7.5a: TDAQ backend with COTs

- DRD7.5a:
 - TDAQ backend in HEP experiments
 - Hardware device: keep pace with COTs technologies (CPU, GPU, FPGA).
 - Software/firmware development: generic algorithms, workflows, or design tools for TDAQ real-time processin(
 - Mainly trigger development.

CPU

GPU

FPGA

Physics/ Algorithm

- Tracking
- Calo clustering
- Topology
- Anomaly detection
-

•	Software coding	

- ML framework
- HDL
- HLS
- ML inference
-

- Considering the trend, two major types of Trigger systems for real-time processing/filter:
 - A very personal point of view, as the boundary in between is getting vague nowadays.

• **High-level**: Software-based algorithm development with computing farm. In addition to CPU/GPU, FPGA acceleration is a new application. <u>Keywords</u>: Hardware acceleration platforms with CPU/GPU/FPGA, Alveo, Versal acceleration card, Versal DPU.

Collaboration within 7.5a

- · How do we work together?
- The physics/algorithm part is mostly dedicated to experiment purpose, so the source codes might not be suitable to be shared.
- The framework of software/firmware + hardware is expected part to share.
 - The major core technique for TDAQ experts.
 - The unique core technique from each sub-group.
 - A git repository has been prepared for maintenance purpose. The contribution from each sub-group is under discussion within 7.5a.

Our Veral project @ DRD7.5a

• So here are the works to be shared by our Versal project:

PAM4 (Pulse Amplitude Modulation)

- CEF organized a research project "Versal project" for the common R&D of future universal FPGA device mainly based on the study on Xilinx Versal ACAP.
- Fundamental functionalities with evaluation kits:
 - PAM4, PCIe, AI engine, and DPU.
- Algorithm implementation and methodologies
 - General study on the techniques: HLS, ML, AI engine, and DPU.
 - Persist the technical knowledge as a database, and hold hand-on lectures for experience sharing.
- Plan:
 - Implementing various kinds of existing trigger algorithms in Belle II and ATLAS with Versal and different skills.
 - R&D on the new trigger device UT5.