

Power distribution over the wafer-scale monolithic pixel detector -MOSAIX for ALICE ITS3

Szymon Bugiel (CERN) on behalf MOSAIX design team and the ALICE collaboration

25 October, 2024

Introduction

> Wafer-scale chip design challenges covered in this talk:

- 1) How to ensure high yield?
- 2) How to distribute the power over the chip?
- 3) How to validate power grid performance?

- ➢ MOSAIX detector:
 - full-size prototype of the ALICE ITS3 sensor
 - 26.6cm x 1.95cm
 - Monolithic
 - TPSCo 65nm

How to cope with chip-killing defects?

Yield

- Alice ITS3 layer: 26 cm x 6-10 cm devices \geq
- Yield needs careful assessment! \geq
- Operation with few defects must be possible \geq
- Shorts probability to be minimized \succ

Two powering layers

- GLOBAL
 - very robust
 - supplies only configuration circuitry
- LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation

EP R&D

Two powering layers

- GLOBAL
 - very robust
 - supplies only configuration circuitry
- LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation

Safe power-up procedure:

- Separate services power domain
- TIIe's power for configuration before others supplies are ON

Defective tile adds 0.7% of dead area, but chip maintains functional!

EP R&D

Yield: Conservative design

- Sub-blocks are categorized by their failure impact
 - **CAT1** minor impact, pixel/pixel group malfunction
 - **CAT2** moderate impact, could cause full tile malfunction
 - $\textbf{CAT3}\,$ high impact could affect the performance of entire chip
 - Complemented with custom DRC rules for design checks (width / spacing / via enclosure / via count)

N		Periphery	Periphery	Periphery		Periphery		Periphery		Periphery	
stitched backbone	SWITCHES	Pixel Matrix	SMITCHES Dixel Matrix	SHOT Pixel Matrix	stitched backbone	SHU Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
	F	Unit bias	Unit bias	Unit bias		Unit bias	F	Unit bias	F	Unit bias	
v stitched backbone	SWITCHES	Pixel Matrix	Pixel Matrix	Pixel Matrix	v stitched backbone	Pixel Matrix	SWITCHES	Pixel Matrix	SWITCHES	Pixel Matrix	
SN		Periphery	Periphery	Periphery	Sr	Periphery		Periphery		Periphery	

Repeated Sensor Unit floorplan

Eg. Custom metal min spacing rules

Yield: Conservative design

EP R&D ALICE

- Sub-blocks are categorized by their failure impact
 CAT1 minor impact, pixel/pixel group malfunction
 - **CAT2** moderate impact, could cause full tile malfunction
 - CAT₃ high impact could affect the performance of entire chip
 - Complemented with custom DRC rules for design checks (width / spacing / via enclosure / via count)
- Power nets spacing contrained even further
 - Connectivity aware custom DRC checks for power grids

LDVSSØ				LDVSSØ
LDVSSØ			· · · · · · · · · · · · · · · · ·	IDVS SØ
	l .		÷	
Solo Contraction		SSØ SSØ	÷	
		LAV [*]		
LDVSSØ				LDVSSØ
•				
LDV5S0			-	LDVSSØ
LDVSSØ				LD/SS0 TWSCA
 X5.80			*	DVSS0
•				
LAVS <u>SØ</u>				LAVSS 0
VSS0 VSS0 VSS0		VSS0 VSS0 VSS0		VSS0 VSS0 VSS0 VSS0
LAVSSØ				124 V 2 3 2

Yield: Conservative design

EP R&D ALICE

- Sub-blocks are categorized by their failure impact
 - **CAT1** minor impact, pixel/pixel group malfunction
 - **CAT2** moderate impact, could cause full tile malfunction
 - $\textbf{CAT3}\ -\ high\ impact\ could\ affect\ the\ performance\ of\ entire\ chip$
 - Complemented with custom DRC rules for design checks (width / spacing / via enclosure / via count)
- Power nets spacing contrained even further
 - Connectivity aware custom DRC checks for power grids
- Power grid designed for burn-throughs
 - power grid are able to deliver
 >100 mA to any location
 - See Gregor Eberwein talk

Remaining shorts can be burned-out with high currents

How to distribute the power?

MOSAIX powering

MOSAIX consumption breakdown

LEC – Left End-Cap RSU – Repeated Sensor Unit REC – Right End-Cap

Initial worst case IR drops estimates

- > How to derive local power from the global?
 - Serial powering: ٠

 - reduces IR drops
 not an option --> common PSUB

Tiles powering schemes

GLOBAL 0.8 V LOCAL 3 LDC LDO LDO LDO

Initial worst case IR drops estimates

\geq How to derive local power from the global?

- Serial powering: .
 - reduces IR drops +
 - × not an option --> common PSUB
- Per-tile Low-Dropout regulators (LDO): ٠
 - control +.
 - current stability (shunt LDO) ÷
 - needs 3.3 V supply --> power consumption
 - dual-rail regulation
 - complexity --> dead area
 - > The only choice with up to 800 mV IR drops (per rail!)

Initial worst case IR drops estimates

Worst case IR drops in new metal stack

How to derive local power from the global?

- Serial powering:
 - + reduces IR drops
 - X not an option --> common PSUB
- Per-tile Low-Dropout regulators (LDO):
 - + control
 - + current stability (shunt LDO)
 - needs 3.3 V supply --> power consumption
 - dual-rail regulation
 - complexity --> dead area
 - The only choice with up to 800 mV IR drops (per rail!)

- Power switches:
 - + simplicity --> least area
 - + power-efficient
 - no control
 - tiles operate at different supplies
 - --> [1.2V +/- 10%] operation margins

Power grid design and validation

Kye requirements:

- < 100 mV IR drop on the global power rails
- Equalized drops on analog and digital global supplies
- Minimized drop on the local analog grid (each mV on supply --> 1.5e- threshold difference)

Global power grid simulation

<u>Results</u>

- Simulation results matching preliminary predictions
 -> within specs
- Analog domain

 typical: 50mV max IR drop
 worst: 90mV
 - (high consumption, worst RC)
- Digital domain [plots in backup] - typical: 50mV max IR drop
 - worst: 80mV

Local power grid simulation

<u>Results</u>

- Analog domain

 excellent uniformity
 (< 1 mV spreads)
 minor impact of global grid
 (fan-in into pads)
- Digital domain [plots in backup]

 good uniformity
 (<1-4 mV spreads)
 some impact of global grid visible
 (pads locations)

3AVSS pads

Summary

MOSAIX now in an advanced design stage

High yield achieved by:

- segmentation into the tiles
 - --> at 0.7% chip area granularity
- power grid robustness
 - --> spacing between global power stipes
- failure impact categorizing
 - --> with custom design checks coded
- design for burn-through
 - --> power grid capable to deliver > 100 mA for burnout
- Different solutions for tiles powering were evaluated
 power switches chosen
- Power grid validated to satisfy specifications
 - < 100 mV worst case IR drop on global supplies
 - local analog supply uniformity within 1 mV

Backup

ALICE ITS3

- ALICE Inner Tracker System Upgrade:
 - replacement of a standard stave based modules with truly cylindrical full silicon layers

 -> minimal mechanical support thanks to the stiffens of bent silicon
 - 5x lower material budget
 - closer to the interaction point
- Detector requirements:
 - 50 um thick wafer-scale monolithic detector
 - extremely low power (below 40 mW/cm²)
 - powered only from the endcaps
 - bare silicon:
 - no off-chip power reinforcement
 - no off-chip data links

Stitching technique

- Wafer scale detector? --> Stitching technique
 - Dividing a reticle into a separate units:

Repeated Sensor Unit

- Stepping the lithography process with the repeated unit such that the connectivity on the edges is maintained
- Adding endcaps on the sides
 - --> Single MOSAIX chip: 26.6cm x 1.95cm

Tiles powering features

Power switches needs to be configured before main global supplies are ON

- Services slow control:
 - defines power status for every tiles
 - Services domain powered up before other global supplies

SEE immune power control

- SET immune transmission
- Triplicated tile power state control registers

Tiles needs to be allowed to float to PSUB

- OFF tiles can be either remain floating or be actively tied down to PSUB (negative voltage down to -2V)
 --> power switches are thick oxide devices
 - --> there is a need of a level shifter
- Back-to-back diode between local grounds to ensures safe local cross-domain signaling with 1.2V devices

Digital power grid simulations

Results

75

50

25

0

Z [cm]

75

50

25 0

Z [cm]

GDVSS IR DROP (typical case) IR [mV] 100 y [cm] 🛦 49mV RSU[0] RSU[1] RSU[2] RSU[3] RSU[4] RSU[5] RSU[6] RSU[7] RSU[8] RSU[9] RSU[10] RSU[11] 1.95 • Digital domain - 50mV drop over the global network in typical case 0 Ó 13.5 - can increase up to 80mV for highest consumption **GDVSS IR DROP (worst case)** IR [mV] 100 and worst RC corner y [cm] 🖌 80mV - slightly higher local un-uniformity RSU[6] RSU[0] RSU[1] RSU[2] RSU[3] RSU[4] RSU[5] RSU[7] RSU[8] RSU[9] RSU[10] RSU[11] especially next to the endcaps, 1.95 but still not warring 0 13.5 n LDVSS[36] IR DROP (worst case) LDVSS[71] IR DROP (worst case) IR[mV] 81.7 IR[mV] 12 y[cm] y[cm] 0.98 0.98 1.2 mV 4 mV - 10 81.1 80.5 8

0

Ó

0.36 z[cm]

24

0 13.14

13.5 z[cm]

Off-chip power delivery

Padring:

- up to 20 mV drop over standard power IO's
 - --> redesigned to increase conductivity
 - towards the core
 - --> 4x improvement

Off-chip powering:

- up to 20 mV drop on wire bonds
 -> customizes bond pads
 -> 2x improvement
- 15mV/rail cabling to C side
- Settling accuracy: ~15 mV

➢ With all the improvements we are just within specs!

