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Introduction

2

➢ Wafer-scale chip design challenges covered in this talk:

1) How to ensure high yield?

2) How to distribute the power over the chip?

3) How to validate power grid performance?

➢ MOSAIX detector:
• full-size prototype of the ALICE ITS3 sensor
• 26.6cm x 1.95cm
• Monolithic
• TPSCo 65nm



How to cope with chip-killing defects?
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➢ Alice ITS3 layer:  26 cm x 6-10 cm devices 

➢ Yield needs careful assessment!  

➢ Operation with few defects must be possible

➢ Shorts probability to be minimized
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Without countermeasure's
  --> yield gets very low with few shorts

Yield



Yield: Power planning – power segmentation
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➢ Two powering layers
▪ GLOBAL

 - very robust
 - supplies only configuration circuitry

▪ LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation



Yield: Power planning – power segmentation
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➢ Two powering layers
▪ GLOBAL

 - very robust
 - supplies only configuration circuitry

▪ LOCAL
 - powers most of the chip
 - segmented into 144 independent tiles
 - allows defects isolation

➢ Safe power-up procedure:

▪ Separate services power domain 

▪ TIle's power for configuration before 
others supplies are ON

Defective tile adds 0.7% of dead area, 
but chip maintains functional!



Yield: Conservative design 
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Eg. Custom metal min spacing rules
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➢ Sub-blocks are categorized by their failure impact
CAT1   –  minor impact,  pixel/pixel group malfunction 
CAT2  –  moderate impact, could cause full tile malfunction 
CAT3  – high impact could affect the performance of entire chip

▪ Complemented with custom DRC rules for design checks
(width / spacing / via enclosure / via count)

Repeated Sensor Unit floorplan
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➢ Sub-blocks are categorized by their failure impact
CAT1   –  minor impact,  pixel/pixel group malfunction 
CAT2  –  moderate impact, could cause full tile malfunction 
CAT3  – high impact could affect the performance of entire chip

▪ Complemented with custom DRC rules for design checks
(width / spacing / via enclosure / via count)

➢ Power nets spacing contrained even further

▪ Connectivity aware custom DRC checks for power grids



Yield: Conservative design 
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➢ Sub-blocks are categorized by their failure impact
CAT1   –  minor impact,  pixel/pixel group malfunction 
CAT2  –  moderate impact, could cause full tile malfunction 
CAT3  – high impact could affect the performance of entire chip

▪ Complemented with custom DRC rules for design checks
(width / spacing / via enclosure / via count)

➢ Power nets spacing contrained even further

▪ Connectivity aware custom DRC checks for power grids

➢ Power grid designed for burn-throughs

▪ power grid are able to deliver 
>100 mA to any location 

▪ See Gregor Eberwein talk 

Remaining shorts can be 
burned-out with high currents



How to distribute the power?
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MOSAIX  consumption breakdown

➢ >2 A via short edge – only 28 supply pads (A+D) on LEC

➢ Redistributed on-chip over the 26 cm 

▪ IR drops --> challenging despite <40 mW/cm2

11

LEC – Left End-Cap
RSU – Repeated Sensor Unit
REC – Right End-Cap

MOSAIX powering  



Tiles powering schemes  
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Initial worst case IR drops estimates

➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB
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Initial worst case IR drops estimates

➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB

• Per-tile Low-Dropout regulators (LDO):
+    control 

 +   current stability (shunt LDO)
 -    needs 3.3 V supply --> power consumption
 -     dual-rail regulation 

 -     complexity --> dead area  

➢ The only choice with up to 800 mV IR drops 
(per rail!)
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➢ How to derive local power from the global?

• Serial powering:
 +  reduces IR drops

   not an option --> common PSUB

• Per-tile Low-Dropout regulators (LDO):
+    control 

 +   current stability (shunt LDO)
 -    needs 3.3 V supply --> power consumption
 -     dual-rail regulation 

 -     complexity --> dead area  

➢ The only choice with up to 800 mV IR drops 
(per rail!)

• Power switches:
 +  simplicity --> least area
+ power-efficient
 -  no control 
 - tiles operate at different supplies
     --> [1.2V +/- 10%] operation margins
     

Initial worst case IR drops estimates

Worst case IR drops in new metal stack



Power grid design and validation
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➢ Kye requirements: 
• < 100 mV IR drop on the global power rails

• Equalized drops on analog and digital global supplies

• Minimized drop on the local analog grid
(each mV on supply --> 1.5e- threshold difference)



Power grid design
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IR drop simulations

• Full chip power grid model 
  - extracted view

• Resources hungry
 - 100GB of peak memory usage
    (passive only DC sim)
  
 -  simplified models needed
  

Design approach:
• Top 4 metals for power network

• Global grid:
 - endcaps:   vertical uniformity
 - RSU's:       minimize IR drops

• Local grid: 
  - distributed power switches on tile edge
      --> for local uniformity



Global power grid simulation
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Results

• Simulation results matching 
preliminary predictions
 --> within specs

• Analog domain 
 - typical: 50mV max IR drop 
 - worst: 90mV
   (high consumption, worst RC)

•   Digital domain [plots in backup]

 - typical: 50mV max IR drop 
 - worst:  80mV



Local power grid simulation
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Results

• Analog domain
- excellent uniformity 
  ( < 1 mV spreads)
- minor impact of global grid 
  (fan-in into pads)

• Digital domain [plots in backup]
- good uniformity 
 ( < 1 - 4 mV spreads)

- some impact of global grid visible
  (pads locations) G
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Summary  
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➢ MOSAIX now in an advanced design stage

➢ High yield achieved by:
 - segmentation into the tiles 
       --> at 0.7% chip area granularity
 - power grid robustness 
       --> spacing between global power stipes

 - failure impact categorizing
        --> with custom design checks coded 

 - design for burn-through
       --> power grid capable to deliver > 100 mA for burnout

➢ Different solutions for tiles powering were evaluated
 - power switches chosen

➢ Power grid validated to satisfy specifications
  - < 100 mV worst case IR drop on global supplies
  - local analog supply uniformity within 1 mV



Backup



ALICE ITS3
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➢ ALICE Inner Tracker System Upgrade:
• replacement of a standard stave based modules with 

truly cylindrical full silicon layers
--> minimal mechanical support thanks to the stiffens of bent silicon

• 5x lower material budget
• closer to the interaction point

➢ Detector requirements:
• 50 um thick wafer-scale monolithic detector 
• extremely low power (below 40 mW/cm2)
• powered only from the endcaps
• bare silicon:

 - no off-chip power reinforcement
 - no off-chip data links 

ITS3

ITS2



Stitching technique
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➢ Wafer scale detector?  --> Stitching technique
• Dividing a reticle into a separate units:

• Stepping the lithography process with the repeated 
unit such that the connectivity on the edges is 
maintained

• Adding endcaps on the sides
-->  Single MOSAIX chip: 26.6cm x 1.95cm

30 cm



Tiles powering features
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Power switches needs to be configured 
before main global supplies are ON
➢ Services slow control: 

 - defines power status for every tiles
 - Services domain powered up before 
   other global supplies

SEE immune power control 
➢ SET immune transmission
➢ Triplicated tile power state control registers

Tiles needs to be allowed to float to PSUB
➢ OFF tiles can be either remain floating or be 

actively tied down to PSUB 
(negative voltage down to –2V) 
--> power switches are thick oxide devices 
--> there is a need of a level shifter

➢ Back-to-back diode between local grounds 
to ensures safe local cross-domain signaling 
with 1.2V devices



Digital power grid simulations
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Results

• Digital domain 
 - 50mV drop over the global
  network in typical case
 - can increase up to 80mV 
   for highest consumption 
   and worst RC corner
 - slightly higher local un-uniformity
  especially next to the endcaps, 
   but still not warring
  

  



Off-chip power delivery  
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➢ Padring:
- up to 20 mV drop over standard power IO`s
    --> redesigned to increase conductivity

          towards  the core
     --> 4x improvement

➢ Off-chip powering:
- up to 20 mV drop on wire bonds
     --> customizes bond pads
    --> 2x improvement
- 15mV/rail cabling to C side
- Settling accuracy: ~15 mV

➢ With all the improvements we are just within specs!

bPOL

C-side

A-side
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