

R&D status of the muon detector for CEPC

Xiyang Wang

(On behalf of Muon Group)

Institute of modern physics, Fudan University

The 2024 international workshop on the CEPC

Hang Zhou, 25 Oct 2024

R&D efforts and results

Mechanical Structure and Electronic

Performance from simulation

D Summary

Muon detector, the outermost detector with the largest volume, clean environment.

- Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this. Benefits:
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Can be used to search for Long-lived particles.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.
- Furthermore, it must be robust and low cost.

Key requirements:

- Muon ID
- Track reconstruction

Technology survey and our choices

Our choice: PS as the baseline option, RPC for comparison in R&D.

	Advantages	Disadvantage
Plastic Scintillator (PS+SiPM)	Solid detector, structure simple, high rate capability, low operation voltage, use SiPM similar to HCAL, time resolution	DCR of SiPM
RPC	Cost, mature tech., time resolution	Fill gas, HV system
μ -RWELL	Spatial resolution, high rate capability	Structure, number of readout channels, time resolution, cost.

> Main Technical Challenges

- Long detector module: > 5m, due to the large size of the muon detector.
- How to achieve the required efficiency and the time resolution from a long PS bar?
 - Kuraray fiber has an attenuation length of 6.8m.
 - We got the effective attenuation length of 2.6m from lab testing on WLS fiber.

- Structure of PS Strips
- Prototype and CR test
- Simulation for improvements
- New R&D on PS bars

Published papers:

- 1. Design and performance of a high-speed and low-noise preamplifier for SiPM, Nucl. Sci. Tech. 34, 169(2023)
- 2. Design and test for the CEPC muon subdetector based on extruded scintillator and SiPM, JINST 19 P06020(2024)

Structure of PS Strips

Baseline noise: 0.6 mV Bandwidth: 426 MHz

PS bars made by GNKD company

- –Increase the light yield;
- –Develop/improve the reflection layer with Teflon;–Strip production.

WLS made by Kuraray company

Attenuation length of 6.8 m
Improve the diameter 1.2mm → 2.0mm

SiPM made by NDL company (EQR20 11-3030D-S)

- –Gain: 8.2×10^5
- –Dark Count Rate: 150 kHz/mm²
- Active Area: 3mm×3mm

Prototype and CR test

Studies of SiPMs, WLS fibers

Prototype:

- Groove PS(1.5m)+WLS(1.2mm)+SiPM (3.0mm)

Performance:

- $-\epsilon > 98\%$ can be obtained
- Time resolution better than 1.5ns

JINST 19 P06020(2024)

Geant4 Simulation (Groove VS Hole)

Simulation for single channel

- Fiber embedding: Groove \rightarrow Hole, $N_{p,e} \times 1.4$
- Diameter: 1.2mm \rightarrow 2.0mm, $N_{p,e} \times (2-2.8)$

Simulation shows potential to increase the light collection by a factor of (2.8 – 3.9), which is helpful for building long detector module.

Improvements on the scint. strip

- Very new R&D in the past months, like the production in Fermi Lab.
 Fiber embedding: Groove → Hole
- Diameter: no new fiber available yet, we use three 1.2mm fibers instead.

Scintillator production at Fermilab

New scintillator provided by GNKD, with our R&D!

Very positive to the design of long module (>4m)

CEPC

- Geometry: barrel and endcaps
- Detector channel elements and module
- Consideration on readout electronics

Structure of Muon detector (Barrel)

Structure of Muon detector (Endcap)

Overall of the design

Number of channels: (288 modules) 43,176

- Barrel: 144 modules, 23,976 ch
- Inner endcaps: 48 modules, 6,912 ch
- Outer endcaps: 48 modules, 12,288 ch
- Sensitive length: 119,563m
 - Length for PS bar and WLS fiber
- Sensitive area: $4782m^2$

Detection dead area: ~1.5%

0.04% due to chimneys in the barrel for magnet system, 0.07% from the cross in endcaps, and 1.4% due to the beampipe.

Detailed design of the channel and module

Detector channel

4m

- PS bar: $4cm \times 1cm$ cross section
- WLS fiber: $\phi = 2.0mm$
- SiPM: $3mm \times 3mm$

Detector module

- Superlayer with perpendicular channels
- Carriers for preamps held at the frame
- Space between PS bars and aluminum layer is allowed for long cables.

Mechanics

Aluminum frame, PS bars

First Al frame $(1.7m \times 1.7m)$ is ready for module prototype.

superlayer

Carrier for the FEE, inside the module. Can be modified for the new electronics in the future.

- Readout design for ECAL and HCAL covers the requirements of Muon detector: $N_{pe} < 100$, $\sigma_T < 0.5 ns$
- Use the ASIC scheme from ECAL or HCAL, and customize the FEE based on ASIC.
- Revise according to the constraints from cooling and mechanical structure of the detector

Readout electronics (Stage scheme)

- Geometry and Geant4 simulation is implemented in CEPCSW, reconstruction and performance studies are ongoing:
 - Study of the Molière radius of muons originating at the interaction point and traversing the ECAL and HCAL. → Spatial resolution √
 - Muon ID efficiency based on hit layers. ✓

More work required:

- Tracking reconstruction.
- Fake rate of $\pi \rightarrow \mu$.
- Impact of physics performance.
- Background and hit rate.

Everything based on CEPCSW framework.

1k muons at 10 GeV muons

CEPC

- Muon ID efficiency vs. momentum
- Define Muon ID:
 - If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.

Muon ID efficiency of the barrel

About track reconstruction

- Magnet field in the iron layers can be simulated;
- Most charged particles in the tail of a hadronic shower are π^{\pm} and μ^{\pm} .
- If we can reconstruct the momentum of these charged particles, or add their masses, at least.
- K_L may be reconstructed from its decay to $\pi^+\pi^-\pi^0$.
- Tracking in the Muon detector can extend the search of LLP from L < 3.5 m to L < 4.9m.

- Muon detector will be designed for muon ID, but not limited to this.
- Many R&D efforts have been performed: FEE, prototype, simulation, etc.
 - Performance of a 1.5*m* prototype: $\epsilon > 98\%$, $\sigma_T < 1.5 ns$
 - R&D on new scintillator with hole shows very good performance.
- Detailed design:
 - Barrel: 6 layers, 2 long modules per layer, helix dodecagon
 - Endcaps: 6 layers, 4 sectors per layer, two modules (inner and outer) per sector
 - Large area modules with long PS bars.
 - 43,176 channels, 4782 m^2 area, and 119,563 m long fiber, in total.
- Work plan will focus on electronics, software and simulation for performance, prototype modules with long bars.

THANKS !

back up

Add chimneys

Input the chimneys of the magnet system.

It contributes a dead zone of <0.4%.</p>

Bandwidth requirement

Muon	Module	Channel/Module	Readout Channel	Hit rate/Hz (worst case)	Data format	Raw data rate / Gbps
Barrel	192	169.5	32544	10 k	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	15.63
Inner endcaps	64	144	9216	10k~100 k, Average 20 k		8.85
Outer endcaps	64	256	16384	10 k		7.87
Total			~58.2 k			~32.4

- Very preliminary, conservative estimation according to data from Belle II experiment.
- We assigning a faculty to take care of this issue.

Reference for endcaps

Structure of a module

Installation

Cables

Detector Optimization

Muon ID efficiency vs efficiency of single channel

What we learn from the simulations:

- 1. Efficiency of a single channel should $\geq 95\%$,
- 2. Number of superlayers should ≥ 6 ,

while, layers #7,8 are not very helpful for the muon ID, due to the short ϕ -length

3. Threshold of momentum > 4 GeV/c, need help from HCAL for the lower momentum muon track.

Readout electronics: Time-over-threshold (TOT) scheme

Front-end electronics ready:

- High time resolution preamp: $\sigma_T \approx 20 \ ps$
- High-speed discriminator shows $\sigma_T \approx 0.2 \ ns$
- Implementation of TOT: operational amplifier + high-speed discriminator + TDC.
- **FEE** integrated DAC to adjust threshold and SiPM bias voltage.
- It's possible to get N_{pe} according to TOT.
- Investigating the possibility of integrating the BEE into the detector module: only power cable and signal fiber.

250 300 350 400 450

Input(mv

SiPM mini power

Study on mini power to be integrated into the FEE.

			\frown
SiPM POWER	BIAS-2-14/70 @NDL	C14156 @Hamamatsu	MAX5026 @Fudan
Voltage (V) Output Range	14~70	0~80	0~71
Current (mA) Output Range	0.5	2	2
Number of SiPMs driven	100	400	400
Power consumption (mW)	250	100	200
Ripple noise (mV/Vpp)	5.2	0.1	2
Price (¥)	~2000	500	30
1\$ = 7¥			54.2
⁴ 9 ⁴ 66 ⁴ 66 ⁴ 65 ⁴ 6 ⁴ 6 ⁴ 6 ⁴ 6 ⁴ 6 ⁴ 6 ⁴ 6 ⁴ 6		CHA:2: 300 CHB:2: 300 CHA V:0.062 T:1.06 CHB V:31.535 T:0.00 A:0 0.067 B:0	And Concerning