

A timing circuit prototype design for sub-10ps time measurement applications

Chuanye Wang^{1,4}, Xiaoting Li^{1,2,3}, Wei Zhang⁵, Xiongbo Yan^{1,2,3}

Binwei Deng⁶, Di Guo⁷, Le Xiao⁷, Jingbo Ye^{1,2,3}, Lei Zhang⁴

¹Institute of High Energy Physics Chinese Academy of Sciences, ²State Key Laboratory of Particle Detection and Electronics, ³School of Physical Sciences, University of Chinese Academy of Sciences,

⁴NanJing University, ⁵Wuhan Textile University, ⁶Hubei Polytechnic university, ⁷Central China Normal University

□ Introduction

Circuit design

Outline

□ Simulation result

Conclusion

Introduction

♦ Applications

- ➢ HEP: Time Of Flight (TOF) measurements in timing detectors
- TOF-PET (positron-emission tomography)

Current high-precision TDC ASICs

- > ALTIROC
 - Vernier delay line, LSB = 20 ps
- ➢ ETROC
 - Gated ring-oscillated (GRO) delay line, LSB = 19 ps
- ➢ picoTDC
 - Differential delay line with a 2^{nd} -stage interpolation, LSB = 3 ps

♦ Challenges

- Bin-size uniformity
- Multi-channel integration VS power consumption
- Readout bandwidth
- Potential bubble codes

Fig 1. Basic structure of a TOF-PET detector system

Introduction

♦ Architecture

- Ring-oscillator based timing block
 - *RO Delay line (include passive interpolation)*
 - Low-jitter phase-locked loop (PLL, 2.56/1.28/0.64 GHz)
 - Delay locked loop (DLL)
- > Quantization and readout
 - DFFs
 - Synchronous coarse counter (7 bits)
 - Encoder
 - Serializer (1.28 Gbps)

♦ Submitted in July 2024.

Fig 2. The overall block diagram

DLL Design

- ➢ Based on a voltage-controlled delay line (VCDL)
 - 15 differential delay cells
 - 2 dummy cells
 - Time intervals: 26 ps @ 2.56 GHz
- Initial control-voltage settings (4 bit DAC)
- Provide a DVC signal to control the RO-IP delay line

RO-IP DL design

- ➤ 15 differential delay cells
 - Same delay cells and same unit delays (26 ps)
 - Cross connections
 - Oscillating frequency $\approx \frac{1}{2}$ DLL clock frequency
- ➢ 5-stage passive interpolation
 - *Resistor chain and buffers*
 - $LSB = 26 \div 5 = 5.2 \ ps.$
- ➢ Generate 150 fine-time phases

Fig 4. The architecture of the RO-IP delay line

Quantization and readout

- ➤ Two groups of d-flip-flop (DFF) registers
 - Connected to 150 fine-time phases and coarse counters.
 - Event trigger mode: Lead and Trail.
- The difference in delay between rising edges of Lead and Trail represents the event pulse width.
- By tuning the delay with a step smaller than a bin-size, we can obtain an input-output transfer function.
- Calibrations can be made by setting the Lead or Trail to a fixed cycle.

 $T_{meas} = Counter < Trail-Lead > \times T_{RO} + Fine < Trail-Lead > \times LSB$

Fig 5. The overall timing of the quantization and readout

Quantization and readout

- ➤ Two 7-bit synchronous counters (1.28 GHz)
 - Metastability issue caused by asynchronous event signals
 - A nominal range of 100 ns.
- > Parallel data is serialized and output at 1.28 Gbps.
 - Latch pulses capture the quantized codes into the input registers of the serializer.
 - Load pulses sequentially load the codes onto the output data line.
- Serializer can be verified using an integrated pseudorandom binary sequence (PRBS7) generator.

 $T_{meas} = Counter < Trail-Lead > \times T_{RO} + Fine < Trail-Lead > \times LSB$

Fig 5. The overall timing of the quantization and readout

Simulation Result

Performance of the DLL

- ➤ The delay of each VCDL unit ranges from 21.94 to 124.56 ps under typical conditions (Fig 6a).
- \succ Fig 6b shows the delays of 15 units in the DLL; Fig 6c presents the distribution of the 6th delay.
- > The simulated total current is about 25 mA.

Fig 6. Performance of the delay cell and the DLL delay cells

Simulation Result

Performance of the RO-IP DL

- ▶ Fig 7 presents simulation results for the 150 bin-sizes with and without control of the DLL.
- The average bin-size is about 4.99 ps under typical conditions (maximum 6.02 ps; minimum 2.61 ps).
- \succ The simulated current is 22 mA.

Simulation Result

Transfer function

- The simulated transfer function curve indicates that the timing circuit achieved the expected functionality, with an average bin-size of about 5.2 ps.
- Bubble and inconsistency issues.

Fig 8. Transfer function curves: (left) pre-simulations and (right) post-simulations

2024/10/25

Conclusion

- We designed a timing circuit for time measurement applications in high-energy physics experiments. It can achieve a nominal bin-size of 5.2 ps.
- The proposed RO-IP delay line architecture mitigates conflicts arising from DLL duty cycle distortion, the ring oscillator and the passive interpolator, and balances driving capability with power consumption.
- However, the current quantization circuit is very basic, and issues like bubble and inconsistency has not yet been addressed.
- To evaluate the performance of the 150 fine-time phases, we can derive an average transfer function curve by conducting repeated measurements and excluding any anomalous bubble data.
- Preparation for the test board and platform are underway. Chips are expected to be received and tested in November.

Thank you!