

A timing circuit prototype design for sub-10ps time measurement applications

Chuanye Wang1,4 , Xiaoting Li1,2,3, Wei Zhang⁵ , Xiongbo Yan1,2,3

Binwei Deng⁶ , Di Guo⁷ , Le Xiao⁷ , Jingbo Ye1,2,3 , Lei Zhang⁴

1 Institute of High Energy Physics Chinese Academy of Sciences, ²State Key Laboratory of Particle Detection and Electronics, ³School of Physical Sciences, University of Chinese Academy of Sciences,

⁴NanJing University, ⁵Wuhan Textile University, ⁶Hubei Polytechnic university, ⁷Central China Normal University

Introduction

Circuit design

Outline

Simulation result

Conclusion

Introduction

◆**Applications**

- ➢ HEP: Time Of Flight (TOF) measurements in timing detectors
- ➢ TOF-PET (positron-emission tomography)

◆**Current high-precision TDC ASICs**

- ➢ ALTIROC
	- *Vernier delay line, LSB = 20 ps*
- ➢ ETROC
	- *Gated ring-oscillated (GRO) delay line, LSB = 19 ps*
- ➢ picoTDC
	- *Differential delay line with a* 2^{nd} *-stage interpolation,* $LSB = 3 ps$

◆**Challenges**

- \triangleright Bin-size uniformity
- ➢ Multi-channel integration VS power consumption
- \triangleright Readout bandwidth
- \triangleright Potential bubble codes

Fig 1. Basic structure of a TOF-PET detector system

Introduction

◆**Architecture**

- \triangleright Ring-oscillator based timing block
	- *RO Delay line (include passive interpolation)*
	- *Low-jitter phase-locked loop (PLL, 2.56/1.28/0.64 GHz)*
	- *Delay locked loop (DLL)*
- \triangleright Quantization and readout
	- *DFFs*
	- *Synchronous coarse counter (7 bits)*
	- *Encoder*
	- *Serializer (1.28 Gbps)*

◆**Submitted in July 2024.**

Fig 2. The overall block diagram

2024/10/25 4

■ **DLL Design**

- ➢ Based on a voltage-controlled delay line (VCDL)
	- *15 differential delay cells*
	- *2 dummy cells*
	- *Time intervals: 26 ps @ 2.56 GHz*
- ➢ Initial control-voltage settings (4 bit DAC)
- ➢ Provide a DVC signal to control the RO-IP delay line

■ **RO-IP DL design**

- ≥ 15 differential delay cells
	- *Same delay cells and same unit delays (26 ps)*
	- *Cross connections*
	- *Oscillating frequency ≈ ½ DLL clock frequency*
- \triangleright 5-stage passive interpolation
	- *Resistor chain and buffers*
	- *LSB* = $26 \div 5 = 5.2 \text{ ps.}$
- \triangleright Generate 150 fine-time phases

Fig 4. The architecture of the RO-IP delay line

■ Quantization and readout

- \triangleright Two groups of d-flip-flop (DFF) registers
	- *Connected to 150 fine-time phases and coarse counters.*
	- *Event trigger mode: Lead and Trail.*
- ➢ The difference in delay between rising edges of Lead and Trail represents the event pulse width.
- \triangleright By tuning the delay with a step smaller than a bin-size, we can obtain an input-output transfer function.
- ➢ Calibrations can be made by setting the Lead or Trail to a fixed cycle.

 $T_{meas} = Counter \leq Trail\text{-}Lead \geq \times T_{RO} + Fine \leq Trail\text{-}Lead \geq \times LSB$

Fig 5. The overall timing of the quantization and readout

■ Quantization and readout

- \triangleright Two 7-bit synchronous counters (1.28 GHz)
	- *Metastability issue caused by asynchronous event signals*
	- *A nominal range of 100 ns.*
- \triangleright Parallel data is serialized and output at 1.28 Gbps.
	- *Latch pulses capture the quantized codes into the input registers of the serializer.*
	- *Load pulses sequentially load the codes onto the output data line.*
- ➢ Serializer can be verified using an integrated pseudorandom binary sequence (PRBS7) generator.

 $T_{meas} = Counter \leq Trail\text{-}Lead \geq \times T_{RO} + Fine \leq Trail\text{-}Lead \geq \times LSB$

Fig 5. The overall timing of the quantization and readout

Simulation Result

■ Performance of the **DLL**

- \triangleright The delay of each VCDL unit ranges from 21.94 to 124.56 ps under typical conditions (Fig 6a).
- \triangleright Fig 6b shows the delays of 15 units in the DLL; Fig 6c presents the distribution of the 6th delay.
- \triangleright The simulated total current is about 25 mA.

Fig 6. Performance of the delay cell and the DLL delay cells

Simulation Result

■ Performance of the RO-IP DL

- \triangleright Fig 7 presents simulation results for the 150 bin-sizes with and without control of the DLL.
- \triangleright The average bin-size is about 4.99 ps under typical conditions (maximum 6.02 ps; minimum 2.61 ps).
- \triangleright The simulated current is 22 mA.

Simulation Result

■ **Transfer function**

- \triangleright The simulated transfer function curve indicates that the timing circuit achieved the expected functionality, with an average bin-size of about 5.2 ps.
- ➢ Bubble and inconsistency issues.

Fig 8. Transfer function curves: (left) pre-simulations and (right) post-simulations

2024/10/25 11

Conclusion

- We designed a timing circuit for time measurement applications in high-energy physics experiments. It can achieve a nominal bin-size of 5.2 ps.
- The proposed RO-IP delay line architecture mitigates conflicts arising from DLL duty cycle distortion, the ring oscillator and the passive interpolator, and balances driving capability with power consumption.
- However, the current quantization circuit is very basic, and issues like bubble and inconsistency has not yet been addressed.
- To evaluate the performance of the 150 fine-time phases, we can derive an average transfer function curve by conducting repeated measurements and excluding any anomalous bubble data.
- Preparation for the test board and platform are underway. Chips are expected to be received and tested in November.

Thank you!