The 2024 International Workshop on the High Energy Circular Electron Positron Collider

https://indico.ihep.ac.cn/event/22089/sessions/14189/#20241026

Radiation tolerance of opto-electronics and Ge-doped MM fiber

- 850 nm MultiMode technology speed to 25 Gbps/ch fabrication to miniature Chip-on-Board
- Opto-electronics NIEL/TID radhard
- Ge-dope MM fiber TID
 RIA (Radiation Induced Attenuation)

suen@sinica.edu.tw 侯書雲 Suen Hou 2024.10.26 10:20

Fiber optical loss

Commercial Chip-on-Board

- Light Peak USB 3 transceiver
 10 Gbps for consumer electronics
- Lens/Prism : precision PEI molding

VIA Labs USB 3.0 V0510

Spherical-aberration free Plano-Convex Hyperbolic Lens VCSELs aperture from t Ø 5 to 20 µm

Light Coupling efficiency

 VCSEL far-field distribution at low current, 0th mode is centralized higher modes pop-up in outer-rings wider angles

Coupling to Lens

Far-field angle vs I, T

loss to reflection, angular acceptance

L-I, FOCI lens coupled

VCSEL+Lens in Oven

The CERN Phase-II VTRx+ (FOCI 上詮)

- CERN Versatile Link+ group → one module for all
- 10x20 mm² height 2.5mm, 4.5mm
- 4TX+1RX, 10Gbps TX, 2.56 Gbps RX
- VCSEL array laser driver LQD, TSMC 65nm
- Optical Receiver GBTIA TSMC 65nm
- production 65K pcs

TWEPP2021, C. Soos

• Lens is the TW Orange-tek

Orange-tek OT-12, OT-13

5

PIN SERDES SERDES SERDES FPGA Passives **IpGBT** or other SERDES LDD array) array **On-Detector Off-Detector Custom Electronics & Packaging** Commercial Off-The-Shelf (COTS) **Radiation Hard** Custom Protocol

AS+SMU+前鼎(APAC) : 25 Gbps Transmitter

 25 Gbps components, PCB megtron, connectors Driver, LOCId65, TSMC 65nm

2.500

AS+SMU+前鼎 QTRx Transceiver

- 4TX+4RX, tested @10G, will do 25 Gbps
- VCSEL, PD, PCB all 25 Gbps qualified
- Driver, QLDD, QTIA, TSMC 65nm

QTRx	QLDD QTIA					
Data rate	10 Gbps	2.56 Gbps	10 Gbps			
Power supply	1.2 V and 2.5 V					
Sensitivity (BER =1E-12)	80 mV	-17 dBm	-8 dBm			
Rise /fall time	37 ps	40 ps	50 ps			
Total jitter (BER =1E-12)	-	38.5 ps	52.4 ps			
Power consumption /ch	124 mW	120 mW with CP				

TX@10Gbps

RX@10Gbps

Radiation damage to PEI, epoxy Lens

The light coupler cap

Spherical-aberration free Plano-Convex Hyperbolic Lens Material: PEI (polyetherimide), as for the TOSA/ROSA tip optical quality surface

Deterioration by Total-Ionizing-Dose

Irradiated with Co⁶⁰ Gamma ray at INER Taiwan flux: 3.5 kGy/hr, total: **117 kGy** → NO LOSS !!

for light transmission within the 2% systematic error

Internal structure of the FOT MMC3 series proc

muRata epoxy lenses

LANSCE neutron test

- Beam profile similar to ATLAS
- USB transceiver in Bit-Err-Rate
 Straitix II GX, PRBS 2⁷-1 bit pattern
 TX path, RX path tested separately

neutron flux 2.9×10^5 n/cm²s over 1.5 days to 3.8×10^{10} n/cm²

TX: 0 error, upper limit 1.0×10^{-10} cm²/ch (95% CL) RX: 11 errors SEE cross section 2.9×10^{-10} cm²/ch

9

Non-Ionizing Energy Loss to VCSEL, Optical IC

Proton Irradiation

INER 30 MeV proton cyclotron flux of $2x10^{12}$ p/cm²s, to a total $1.2x10^{14}$ equivalent to $4.8x10^{14}$ n(1MeV)/cm²s

- Beam profile

Strip and pad chambers for beam profile strip pitch 1 mm

Irradiation measurement

FOCI module DC biased no signal input, VCSEL online monitored for mid-level DC light

- VCSEL light degradation
- Optical IC function

VCSEL rad-hard degradation, annealing

NIEL to GaAs diodes

850 nm VCSELs, 1 Gbps

NIEL damage

→ light degradation linear to fluence Higher proton momentum

→ less damage to GaAs components (contrary to theoretical calculations)

IUCF beam area

PIN proton damage

Degradation of responsivity (I/L) proton 2E14										
					30 N	1eV	70 N	1eV		
	V _R	fc	diam.	I/L	I/L I	D <mark>ark</mark>	I/L	Dark		
	Vol	GHz	μm	A/W	ratio	nA	ratio	nA		
Truelight	-10		100	0.55	45%	70	45%	50		
S9055	-2	1.5	200	0.32	100%	40	100%	20		
S9055-01	-2	2.0	100	0.20	100%	15	100%	10		
S5973	-3	1.5	400	0.53	70%	100	80%	50		
G8500-01	-5	3.0	40	0.11	45%	0	80%	<u> </u>		
G8500-02	-5	1.9	80	0.25	40%	0	72%	6 0		
G8500-03	-5	1.5	120	0.40	35%	0	72%	0 0		

- PIN rad-hardness
 diameter, thickness →
 A/W, speed & rad-hard
- Proton energy dependence Si PIN : compatible with 30 MeV and 70 MeV protons GaAs PIN : twice damage by 30 MeV than 70 MeV protons

70 MeV proton

TID effects on CMOS

Total Ionizing Dose (TID) induces charge-trapping at **Si-SiO2 interface Dependence :** total dose, dose rate, annealing

- new interface states formed.
- interface state density vs. energy changed
- interface state density changes with time
- construction after irradiation
- static and dynamic electrical response of the Si-SiO2 altered

Charge trapped at the interface

Threshold voltage degradation as a function of the total Dose

X-ray TID on MTX LOCId of ATLAS LAr

X-ray, 3 dose-rates in 280 min to 1.62 kGy(SiO₂) LOCId laser driver shows degradation

Co-60 TID on MTX LOCld

Co-60 varying dose-rates 0.14 to 45 Gy/hr Irradiation in daytime, annealing overnight Dose calibration using Alanine

Co-60 TID on MTX LOCld

Co-60 lower rate to X-ray, mio VCSEL not effected by TID CMOS current drops ~ 10-100 Gy(SiO₂)

E 6.3

6.1

5.9

5.8

0.14 Gy(GaAs)/hr

44.7 Gy(GaAs) Gy/hr

ch1 ch2

ch1 ch2

17

a)

Optical fiber making

PCVD plasma chemical vapor Deposition MCVD modified chemical vapor deposition OVD outside vapor deposition VAD vapor axial deposition Fused Silica Tubes, pure SiO₂ for Fiber Optics,

Bare Fiber Reel

Fiber Cable

Looking for testing 武漢 YOFC <u>长飞光纤</u> Ge-doped, Rad-hard fibers

Co-60 irradiation facility

Bare fiber sample in bag, with SC connectors in water bath, const °C

Ge-doped MM fiber, Co-60 test

Fiber Radiation Induced Attenuation (RIA)

RIA = (IL(0) - IL(t))/LengthIL(dB) = $10 \times log10 (P_T/P_R)$

IL insertion loss P_T transmitter, P_R received

Dependences : Dose rate, Temperature

Fibers tested at Dose rate 1.5kGy/hr Irrad ~8hr daytime, anneal overnight, over 1 week

Ge-doped MM fiber (POFC 0.2 dB/m 300 kGy)

Dashed lines: Instant RIA, at daily max dose Points: RIA after 10 hr annealing

- Dose Rate : higher rate → higher instant RIA
- **Temperature :** lower T \rightarrow higher instant RIA

Ge-doped MM fiber (Co. 0.04 dB/m 300 kGy)

Dashed lines: Instant RIA, at daily max dose Points: RIA after 10 hr annealing

Summary

• Opto COB assembly is mature >10 Gbps

PCB: 10 GHz FR4, 25 GHz, Megtron, Electric connectors: SFP, QSFP, Hirose, Firefly Optical coupling: LC, MT, mini-pigtails

Radiation hardness

Ge-doped MM fiber, good to 0.04 dB/m 300 kGy NIEL on VCSEL, PD TID, SEE on ASIC