

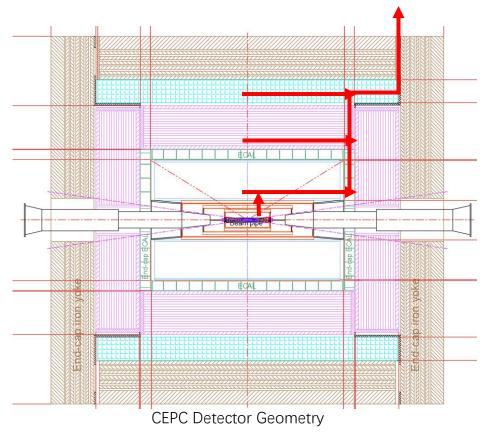
Jun Hu

Institute of High Energy Physics, Chinese Academy of Sciences.

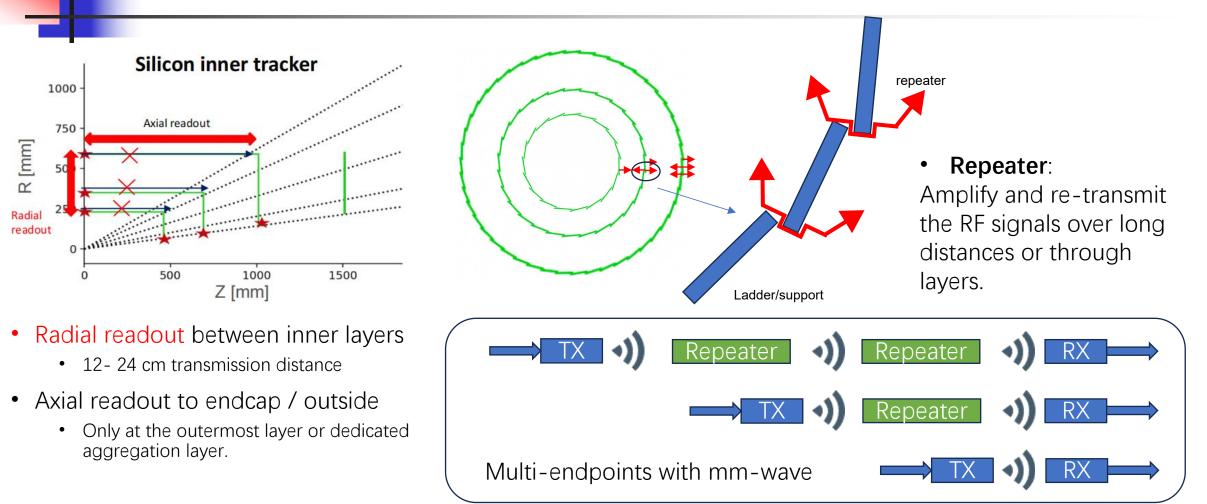
On behalf of the CEPC Elec-TDAQ study team

CPEC Workshop, Hangzhou, Oct. 26, 2024

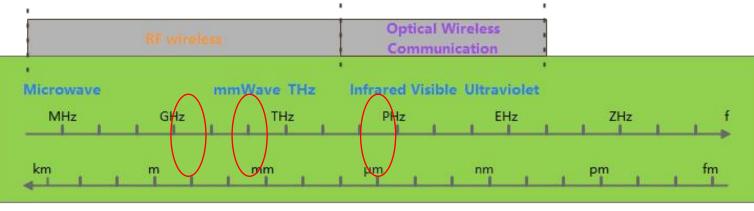
Background


Outline

- Status of Technology Feasibility Studies
- Conclusion


Background

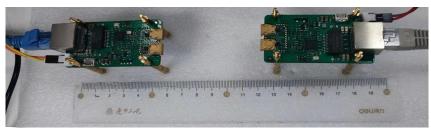
- Wireless transmission advantages include:
 - **Reducing material budget**: Minimize cables, fibers and connectors, while also reducing the dead zone.
 - -> Significantly enhance the detection efficiency and resolution!!!
 - **Convenience for installation and maintenance:** Simplify the placement of the transceiver.
 - Cost Reduction: Removal of cables, fibers and connectors.
- Application ideas for CEPC detector
 - Radial data readout between barrel layers: Provides a new data exchange pathway compared to traditional data readout methods.
 - Axial data readout from barrel to endcap: Serve as an alternative to optical fibers, minimizing space and material usage.
 - Data readout in the endcap: Concentrates the data at the edge of endcap to simplify the complexities of cables routing



Radial data readout

Wireless Technology

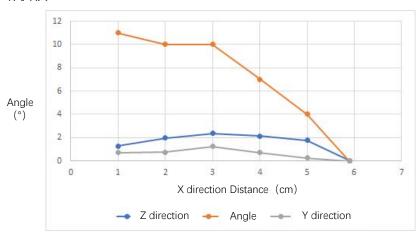



.

Electromagnetic Spectrum

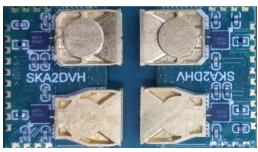
- WiFi (2.4GHz, 5GHz)
 - large antenna volume, high power consumption, narrow frequency band, and high interference
- Millimeter Wave (24GHz, 45GHz, 60GHz, 77GHz)
 - Huge bandwidth with lower power, Small antenna size, High density possible
- **Optical wireless communication** (OWC) / **Free Space Optical** (FSO)
 - Focusing on extremely distance transmission, application in accelerator synchronization systems ٠

MM-wave commercial module



Distance (cm)	Bandwidth (Mbps)	Packet loss rate			
1	914	0.031%			
3	917	0.061%			
5	915	0.05%			
6	913	0.13%			
>6	No link	No link			
Test result at different distances of TX/RX					

Material	Thickness	Penetration Ability			
Paper	2mm	\checkmark			
Plastic ruler	2mm	\checkmark			
FR4 PCB	1.6mm	×			
Flex	0.2mm	×			
Penetration Test with 3 cm distance					


• Test with evaluation boards – SK202

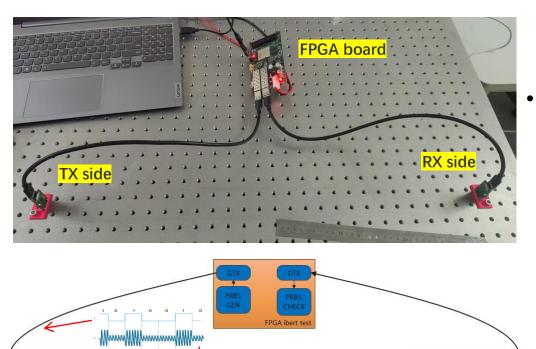
- Based on the commercial 60GHz RF chip, **ST60A2G0** transceiver from STMicroelectronics.
- The transmission speed can exceed 900Mbps when the distance is less than **6 cm**.
- The 60GHz mm-wave signals can easy penetrate materials such as paper, plastic; but **cannot** pass through FR4 PCBs or Flex cables due to the copper's shielding.
- Compared to optical communication, mm-wave requires less precise alignment.
- Power comsuption: Approximately **0.5W** (TX+RX)

Improvement

Available modules with ST chips

- Disadvatages:
 - Current **data rate** is 1Gb/s, which is not enough for our requirements.
 - Horn **antenna** offers good performance but come with high matieral and large form factor.
 - The **transmission distance** is limited to only 6 cm, which may not be enough for many applications,
- We need a new solution!!!

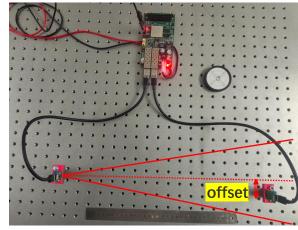
- We attempted to find other On-off keying(OOK) modulation transceiver with higher transmission power.
 - The available commercial modulation chips on the market are almost use coherent modulation schemes, which perform well,but has high power consumption and are complex to use.
 - Currently, the cost of custom chips is quite high, and we have not found a willing partner to assist us with the chip design.


• We have adopted an alternative solution, which is adding a Low Noise Amplifier after TX to increase the transmission distance.

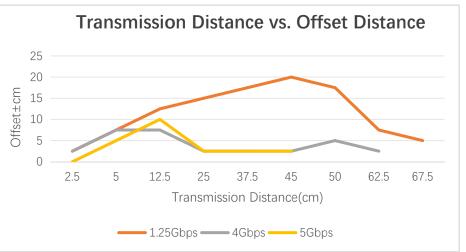
SK60A2 + LNA + patch Antenna

alternative solution

New module

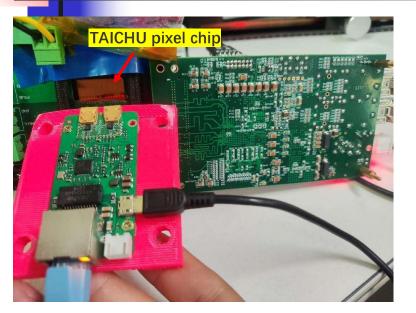

- The new module's data interface directly use the high-speed serial transmission
 - Be compatible with Xilinx's GTP Transceiver
 - A Kintex 7 FPGA board is used to perform the IBERT PRBS testing to verify the communication.

- Integrate with commercially components
- PCB patch antenna
- Size :1.3cm X 0.95cm


Transmission performance

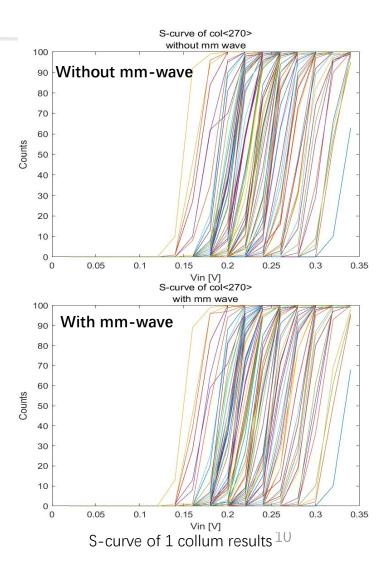
CEPC

- The maximum stable transmission distance is 67.5 cm at 1.25 Gbps.
- The maximum line rate can reach up to 6.6 Gbps at 22.5 cm distance.
- The antenna is optimized around 5 Gbps, aiming to transmit as far as possible, with an alignment accuracy of ± 2.5 cm at 45 cm distance.


Name	ТХ	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		
Ungrouped Links (0)												
🗸 🛞 Link Group 0 (1)							Reset	PRBS 7-bit	۷	PRBS 7-bit	v	
℅ Link O	Quad_115/MGT_X0Y0/TX (xc7k325t_0)	Quad_115/MGT_X0Y0/RX (xc7k325t_0)	5.000 Gbps	1.017E12	0E0	9.832E-13	Reset	PRBS 7-bit	۷	PRBS 7-bit	۷	
	1>	<10^-12 E	BER	@	5	Gb	ps					
Name	ТХ	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		
Ungrouped Links (0)												
🗸 🛞 Link Group 0 (1)							Reset	PRBS 7-bit	۷	PRBS 7-bit	v	
% Link 0	Quad_115/MGT_X0Y0/TX (xc7k325t_0	Quad_115/MGT_X0Y0/RX (xc7k325t_0)	6.600 Gbps	1.014E12	0E0	9.861E-13	Reset	PRBS 7-bit	٧	PRBS 7-bit	v	
	1>	<10^-12 E	BER	@	6.	6 G	bps	-				
			resi									

Line rate (Gbps)	Stable distance (cm)	Connection distance (cm)			
1.25	67.5	80			
4	50	70			
5	45	60			
6.6	22.5	37.5			
The maximum transmission distance					

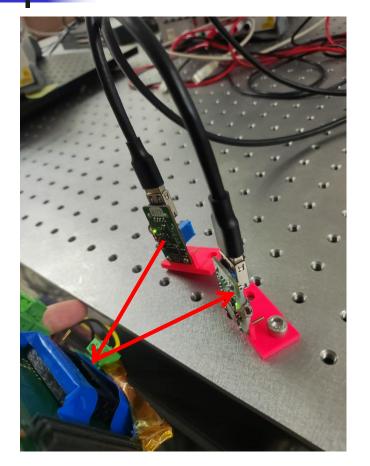
The maximum transmission distance under different line rate


Crosstalk with pixel chip

- Preliminary test using the Vertex pixel prototype chip TAICHU3, including
 - With both low power and high power modules
 - From various directions and distances
 - Evaluate the S-curve to determine the impact on the chips
- The results indicate that it is difficlut to identify the effects of 60 GHz millimeter waves on the pixel chip.
- More detailed testing are needed to analyze the impact.

Crosstalk with each other

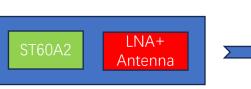
Parallel placement allows for a density of 3 cm


- We have only one set of the new module, so we will first use two sets of low-power modules to test the interference.
- The reuslt shows if placed in parallel, whether vertically or horizontally, a distance of 3 cm does not affect transmission, allowing for a high density of placement
- However, if placed in a crossed configuration, transmission is not possible.

No link under cross placement

Reflection

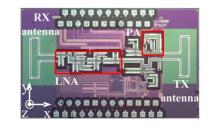
- With high-power modules, We found the reflected RF signals can still be recognized and establish communication.
- This means we need to consider how to prevent these reflected signals from being incorrectly received by other modules on the detector.
 - Design shielding structures.
 - Design antennas to tune directions.
 - Find low materials with high absorption.



MM-wave development plan

- Step 0: Full commercial module
- Basic performance test

- **Step 1**: Design a small PCB module with ST60A2. LNA and custom antenna.
- Higher bandwidth test
- Evaluate the interference with detector and each other



Step 2: Integrate the Antenna and available mm wave RF chips (45G/60G/77G) into the package (AIP)

- mature technological
- Radiation hard test

in the future

Step 3: Custom radiation RF frontend + custom Antenna On one Chip (AOC)

- Final solution of minimum material budget.
- The most challenging, significant R&D costs

Conclusion

- A new millimeter wave module has been designed, featuring a smaller size, higher speed, and extended transmission distance to meet our requirements. Related testing is still ongoing.
- Based on this module, we plan to further miniaturize the AIP chip and begin the repeater design, finally intergrate a demostrator with a detector.
- Additionally, we have been listed as observer of DRD7.1.c (advanced high density data transmission), which may provide us with access to some new technologies and innovative ideas.

BACKUP