

The 2024 international workshop on the high energy Circular Electron Positron Collider

Development of Interposer based pixel TPC Readout

Liu Canwen^{*1}、 Yang Yanxiao^{*1}、 <u>Deng Zhi</u>^{*1}、 Gong Guanghua^{*1}、 Dong Jianmeng^{*1}、 Qi Huirong^{*2}, Chang Yue^{*2}、 She Xin^{*2}、 Zhang Jinxian^{*2}、 Wang Jianchun^{*2}、 Zhang Jian^{*2}

1: Tsinghua University 2: Institute of High Energy Physics, Chinese Academy of Sciences

Oct. 23 – 27, 2024 Hangzhou, China

OUTLINES

01 | Introduction

02 | Interposer based pixel TPC

03 | Current progress on the demonstrator
04 | Summary

Time Projection Chamber for CEPC

- TPC is a gas detector and can measure particle track precisely in three dimensional with low mass
- TPC is as the baseline main tracker in CEPC ref-TDR, achieving good momentum resolution and particle identification

Pad Readout TPC

Waveform Sampling

> Signals induced in readout pads **in mm²**:

- ALICE TPC: 4x7 mm² 6x15 mm²
- ➤ T2K TPC: 10x11 mm²
- > ILC TPC: 1x6 mm²
- Ballistic Loss vs signal pileup
- Acquire amplitude and time information at the same time-

Drift length (cm)

Pixel readout TPC

- Combination of a pixel ASIC with TPC, e.g., 55 um pixels using TPX3/4
- > The signal duration variation reduces as the pixel size
 - > no need for waveform, only charge and arrival timing
- > PID improvement: $dE/dx \rightarrow dN/dx$

Gridpix: Jochen's slide in MPGD 2017

Why pixel TPC for CEPC

Reconstructed dN/dx

40

38

36

34

32

30

- > CEPC: 10-year Higgs \rightarrow 2-year Z pole \rightarrow 1-year W
- High rate @ Z-pole: small pixel readout
- > Better **PID** requirement: $\sim 3\% \rightarrow dN/dx$

Current Pixel TPC: Gridpix

- More than **10 years** development
- > Direct readout with a pixel ASIC, e.g., **TPX3**
 - Number of pixels: 256 x 256
 - Pixel pitch: 55 um
 - ≻ ENC: ~ 60 e
 - ➤ ToT and ToA
 - Power: ~1W/cm2
- > Next version **TPX4**:
 - > 3.4 times larger
 - > 4-side buttable with TSV
 - Low power mode

- How to build in large area ~1m²? Module scale-up, low power consumption...
- What is the optimum pad/pixel size for CEPC TPC? 200-600um
- > Any other technology for different pixel size with the same chip? **YES**

PID with high granularity dE/dx by Ulrich Einhaus, 2020 8

PCB fanout: pad or pixel size limited by its feature size to 700um

Towards MPGD with embedded pixel ASICs by Lucian Scharenberg, 2024

> What we may look for....

High density PCB process Precision: 100 um Pads: 10 mm

Chip packaging process Precision: 1-10 um Pixels/Pads: 0.1-1 mm IC process Precision: 0.1 um Pixels: ~10 um

Advanced chip packaging technologies

Advanced chip packaging technologies

Advanced chip packaging technologies

Chip First

face-down

Apply thermal release tape on carrier

Face-down die assembly on carrier

Wafer/panel overmolding

Carrier release

RDL (e.g. thin film, PCB based, ...), balling, singulation

face-up

Apply temporary bond layer on carrier

Wafer/panel overmolding

Mold back grinding and RDL

Carrier release and singulation

Chip Last

Wafer/panel overmolding

Carrier release, balling, singulation

Interposer based pixel TPC

- Pixel readout electronics
 - Multi-ROIC chips + Interposer PCB as RDL
 - High metal coverage
 - > 3 or 4-side buttable
- Low-power energy/time measurement ASIC: TEPIX
 - Low noise: ~100 e noise
 - > 5 ns drift time resolution
 - Low power: 100 mW/cm2 (250uW/ch)

Interposer based pixel TPC

Interposer design: 3-side buttable

- > 8 TEPIX chips in one interposer: 32 x 32 pixels
- L/S: 15 um/15 um, hole size: 50 um, 8 layers
- Parasitic capacitance optimized: <0.6 pF</p>

0.5mm x 0.5mm pixels

Readout ASIC: TEPIX

() () **消華大学工程物理系** Department of Engineering Physics, Tsinghua University

- Block diagram
 - Charge Sensitive Preamplifier(CSA)
 - CDS amplifier provides additional gain and noise shaping
 - Wilkinson type ADC each pixel
 - Timing discriminator with Time of Arrival information

Ramp&14 bit-Counter (from top-level) 2.2mm

5.6mm

Readout ASIC: TEPIX

Chip Performance

- Power Consumption ~ 0.5mW/ch 250
- Timing ~ <1LSB(10ns)</p>
- Noise ~ 300e

Parameter	Spec
Number of channels	128
Power Consumption	Analog<30mW
	Digital<30mW
ENC	~300 e(high gain)
Dynamic Range	25fC(high gain)
	150fC(low gain)
INL	<1%
Time Resolution	<10ns

Prototype for beam test

- Pixel size: 0.5mm x 0.5mm pixel
- > Pixel number: 5 mm x 150 mm \rightarrow 10 x 300 channels

Prototype for beam test

Test board and setup

Prototype for beam test

Preliminary test results with calibration signal:

- Charge injected ~6fC;
- ➢ 4 triggers, gap between each trigger 40us

Trigger time and energy histogram:

Results:

- got expected trigger time.
- got expected energy value according to the charge injected.
- some channels has lower energy of 1st trigger, need further investigation.

Summary

- In order to meet the stringent demands on high rate and PID, pixel TPC is essential for CEPC tracking system
- An interposer based pixel readout for CEPC TPC has been proposed and a demonstrator of 500um x 500um pixels was developed, together with a multi-channel readout ASIC – TEPIX
- Interposer based pixel readout provides more flexibility, e.g., pixel size, power consumption etc. And the interposer and ASIC chip can be codesigned or co-optimized for the future

