

A common project for powering detector front-end electronics

Xiayu Wang, Xiaoming Tao, Jia Wang

Institute of microelectronics, Northwestern Polytechnical University

Oct. 26, 2024, Hangzhou, CEPC Workshop

Preliminary radiation test of GaN transistor

Measurement results of LDO built-in TaichuPix3

Structure design of DC/DC buck converter

D Summary and future work

Parallel powering with DC-DC converter VS Serial powering

Serial powering (Backup)

- ✓ Less cable mass
- ✓ Higher power efficiency, more suitable for large current load
- ✓ Low noise
- ✓ Unrequired Magnetic components
- Many changes with the old power system
- Lower reliablity
- Different groud potential -> AC-coupled output, no suitable for stiching chips, very high bias voltage of sensors
- "Larger" threshold current required to switch on shunt regulator
- ✗ Consistency of shunt regulator and LDO

Parallel powering (Baseline)

- ✓ Compatible with the conventional power system
- ✓ Few changes of readout circuit or sensor required
- ✓ High reliability
- ✓ Unecessary on-chip regulator-> less die area
- Noisy ripple voltage
- ★ Large-area air-core inductor
- × EMI

High magnetic field (Up to 3T in CEPC)

High level of radiation will be reached inside the detectors (5 Mrads)

Power Distribution System

Point-of-load DC-DC converters are utilized to minimize the losses in the cables and reduce material budget.

Design Challenges

- Need of high current to power front-end ASICs —> High conversion ratio
- Total Ionizing Dose up to 5Mrad —> Radiation harden design

Magnetic field up to $3T \rightarrow Air$ core inductors

GaN power transistor

5

- Lower size
- Higher power density
- Faster switching speed
- Radiation tolerance

- □ Lower On-Resistance (Ron): Reducing power loss during on-time, which can improve the efficiency of power distribution systems
- □ Faster Switching Speed: Higher operating frequency, which are essential for reducing the size and weight of inductor while maintaining lower ripple voltage.

https://www.ti.com/cn/lit/an/zhct333/zhct333.pdf?ts=1729816468581&ref_url=https%253A%252F%252Fcn.bing.com%252F

Preliminary radiation test of GaN transistor

Parameter

Radiation test reulsts of commercial GaN power transistor at CSNS

Photo of the PCB fixed to the text platform (yellow arrow in the left picture is the beam direction)

Special thanks	to the su	nort of China	Snall Neut	ron Source
Special thanks	to the su	port or crima	Span Neur	ION SOULCE

i urumete	Value				Jint			
V _{DS,max}		40			V			
RDS(on),max	•	1.5			mΩ	Innoscience		
Q _{G,typ} @ V	/ _{DS} = 20V		28			nC		
DS,Pulse		(200			А		20
Qoss@ V	os = 20V		58			nC		-
	-							
SYMBOL	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS	
BV _{DSS}	Drain-to-Source Voltage		40			V	V _{GS} = 0 V, I _D = 1.1 mA	
DSS	Drain Source Leakage			0.04	0.9	mA	$V_{GS} = 0 V, V_{DS} = 32 V$	
1	Gate-to-Source Forward Le	akage		0.04	0.8	mA	V _{GS} = 5 V	
IGSS	Gate-to-Source Reverse Le	akage		0.04	0.4	mA	V _{GS} = -4 V	
V _{GS(TH)}	Gate Threshold Voltage		0.7	1.1	2.3	V	$V_{DS} = V_{GS}$, $I_D = 25 \text{ mA}$	
RDS(on)	Drain-Source On-state Resi	stance		1.2	1.5	mΩ	V _{GS} = 5 V, I _D = 15 A	
V_{SD}	Source-Drain Forward Volta	ige		1.25		V	$I_{\rm S}$ = 0.5 A, $V_{\rm GS}$ = 0 V	
	[РС]-	LAN	SM	U	copper interconnects (1.5mm ²))U
							l.e.e	_

Value

Ground Underground

Innoscience

Schematic of the online irradiation testing

Unit

Preliminary radiation test of GaN transistor

Radiation test reulsts

- The threshold voltage of measured transistor decreases to 0.45V when the proton beam is opened with energy of 80MeV.
- \succ The on-resistance of measured transistor decreases to 0.9 Ω and 0.55 Ω at 1A and 2A currents, respectively.
- > Both can be stable till the fulx increases to $1.7 \times 10^{13} \text{ p/cm}^2$.

Measurement results of LDO built-in TaichuPix3

Micro-photo of chip and measuring setup

external supply: VBG1

Measurement results of LDO built-in TaichuPix3

Line regulation and load regulation (4 chips) external VBG

10

300

---1

250

Structure design of DC/DC buck converter

Design specification of the DC/DC converter

Parameter	Value
Input voltage	36-48 V
Output voltage	1.2 V, 2.5 V
Output current	<10 A
Output ripple voltage	<10 mV
power efficiency	85%
Power module size	<50x20x6.7mm ³
TID	5 Mrad
Magnetic field	3Т

Structure design of DC/DC buck converter

Comparison of the loop control methods

Control type	Transient Response Speed	Noise	Output Voltage Accuracy	ΕΜΙ	Ripple voltage	Complexity
Voltage PWM	×	V	V	V		V
Current PWM	V	×				
Hysteresis				\checkmark	×	V
RBCOT	V			×		
V ² COT	V		V	V		×

Structure design of DC/DC buck converter

Voltage-Mode PWM DC-DC Converter

Loop delay = OPA delay + Driver propagation delay + MOSFET ON-delay

Limited by the loop delay, if the conduction time is less than the loop delay, the loop will be too late to respond, resulting in loop instability

Simulation of setup time of Innoscience and EPC GaN

Simulation result with Pspice model of GaN @1MHZ

Table II: Dynamic parameter simulation results

	Input delay	Risetime	Falltime
EPC2020	<1ns	65ns@1MHz 95ns@5MHz	10ns
X INN40	3ns	30ns@1MHz 34ns@5MHz	2ns
INN100	1ns	8ns@1MHz 12ns@5MHz	7ns

Delay time of GaN

UCC27611		Texas Instruments		4 A/6 A高速5 V、优化的单栅极驱动器					EPC9081
t _{D1}	D1 Turnon propagation delay ⁽¹⁾			$C_{LOAD} = 1 \text{ nF},$	N = 0 V to 5 V		14	25	ns
t _{D2}	D2 Turnoff propagation delay ⁽¹⁾			C _{LOAD} = 1 nF,	N = 5 V to 0 V		14	25	ns

uP1964	uPI Se	emiconductor		增强型氮化镓场效应				晶体管的单通道栅极驱动			
Rising Propagation Del	ay Time	T _{PDHLG}	$V_{CC} = 5V$	@load=1pF		20	25	ns			
Falling Propagation De	lay Time	T _{PDLLG}	$V_{CC} = 5V$	eroau-mir		20	25	ns]		

LMG1020 5-V, 7-A, 5-A Low-Side GaN and MOSFET Driver For 1-ns Pulse Width

Applications

	Applications	-	1			
t _{pd, r}	Propagation delay, turn on	IN- = 0 V, IN+ to OUTH, 100 pF load	1.5	2.5	4.1	ns
t _{pd, f}	Propagation delay, turn off	IN- = 0 V, IN+ to OUTL, 100 pF load	1.8	2.6	4.3	ns
		•	1			

48/1.2V 1MHz Ton=25ns

- > A delay of 20ns is added to simulate the delay of the controller.
- > The responce speed of loop is low and the output voltage oscillates.

On-time of the power transistor cannot be too short.

Summary and working plan

Conclusion

- We chose (conventional) Parallel Powering as the baseline scheme, while consider Serial Powering as the backup scheme.
- Some preliminary radiation tests (GaN MOSFET and LDO) have been completed The selected domestic power transistor can ensure no failure in the irradiation environment The LDO's test result is promising, and the next step is to improve its radiation tolerance
 The system simulation of the DC/DC converter is completed

Future work

- Design of a DC/DC controller prototype chip
- □ A functional DC-DC module by 2025
- □ An radiation tolerant power system(BaSha series) within three years

Thank you for your attention!

Xiayu Wang, Xiaoming Tao, Jia Wang Institute of microelectronics, Northwestern Polytechnical University

Oct. 26, 2024, Hangzhou, CEPC Workshop

GaN MOSFET research results

	VDS (MAX)	VGS (MAX)	RDS(on)(mΩ) (MAX)@5VGS	QG(nC) (TYPE)	ID (A)	Pulse Current ID (A)	Package(mm)
EPC2031	60	6	2.6	16	48	450	BGA 4.6 x 2.6
EPC2020	60	6	2.2	16	90	470	LGA 6.05 x 2.3
EPC2202	80	5.75	17	3.2	18	75	LGA 2.1 x 1.6
EPC2204A	80	6	6	5.7	29	125	LGA 2.5 x 1.5
EPC2065	80	6	3.6	9.4	60	215	LGA 3.5 x 1.95
EPC2029	80	6	3.2	13	48	360	BGA 4.6 x 2.6
EPC2218A	80	6	3.2	10.5	60	231	LGA 3.5 x 1.95
EPC2021	80	6	2.2	15	90	390	LGA 6.05 x 2.3
EPC2206	80	6	2.2	15	90	390	LGA 6.05 x 2.3
EPC2016C	100	6	16	3.4	18	75	LGA 2.1 x 1.6
EPC2212	100	6	13.5	3.2	18	75	LGA 2.1 x 1.6
EPC2045	100	6	7	6	16	130	BGA 2.5 x 1.5
EPC2001C	100	6	7	7.5	36	150	LGA 4.1 x 1.6
EPC2901C_55	100	6	7	6.9	36	150	LGA 4.1 x 1.6
EPC2204	100	6	6	5.7	29	125	LGA 2.5 x 1.5
EPC2619	100	6	4.2	8.5	29	164	LGA 2.5 x 1.5
EPC2053	100	6	3.8	11.4	48	246	BGA 3.5 x 2
INN40	40	6	1.5	28	50	200	
INN100	100	6	27	13	64	320	

The power loss decreases with RDS(on), and the power pipe establishment time decreases with QG, while RDS(on) and QG are negatively correlated, which requires a performance compromise in practical selection

VBG1 and VOUT of TaichuPix2 LDO

Control Loop Analysis and stability

Voltage-Mode PWM DC-DC Converter

Barkhausen's criterion: the phase shift does not exceed -180° for an open-loop gain of 1

Power-stage transfer function:

Open-loop transfer function:

$$M(s) = \frac{1}{k} \times H(s) \times \frac{1}{V_{osc}} \times G_P(s) = \frac{1}{k} \times H(s) \times G(s)$$

Frequency compensation through H(s) by inserting zeros (and poles)

Control Loop Analysis and stability

Design of compensate network

Type-III compensate network

$$H(s) \approx -\frac{(1 + R_{c1} \cdot C_{c1} \cdot s) \cdot [1 + s \cdot C_{f3} \cdot (R_{f1} + R_{f3})]}{s \cdot R_{f1} \cdot C_{c1} \cdot (R_{c1} \cdot C_{c2} \cdot s + 1) \cdot (1 + s \cdot R_{f3} \cdot C_{f3})}$$

Control Loop Analysis and stability

Stability simulation of compensated network

Vin=48V, Vout=12V, L=800nH, C=40uF, ESR=2m Ω , fsw=3MHz

Type III compensation, method 2. Phase Margin= 54.8317 deg @ 317.712k Hz calculated R/C of the compensation network: Rf1=104.46k ohm Rf2=9, 4964k ohm Bode Diagram Rf3=8.08004k ohm Gm = Inf, Pm = 54.8 deg (at 2e+06 rad/s) 100 Cf3=17.5929pF Rc1=100k ohm Magnitude (dB) 50 Cc1=113. 137pF Cc2=1.06103pF delt I=3.75 -50 Phase (deg) -45 -90 -135 -180 10^{4} 10^{5} 10^{6} 10^{7} 10⁸ 10^{3} Frequency (rad/s)

Preliminary radiation test

LDO—Taichu Pix2

Line Regulation test results

Before radiation: 2.9mV/V (1.9~2.2V) After radiation: -0.35mV/V (1.9~2.2V)

Before radiation: 2.6mV/V (1.7~2.2V) After radiation: -0.4mV/V (1.7~2.2V)

Preliminary radiation test

LDO—Taichu Pix2

Load Regulation test results

Before radiation: 0.366mV/mA (39~132mA) After radiation: 0.420mV/mA (45~106mA)

Before radiation: 0.277mV/mA (34~225mA) After radiation: 0.290mV/mA (40~195mA)