COMPARING ELECTRONIC SYSTEMS FOR PRECISION TIMING IN ATLAS AND CMS EXPERIMENTS

Jie Zhang (Institute of High Energy Physics)

<u>2024 International Workshop on the High Energy Circular Electron Positron Collider</u> at Hangzhou, Oct. 26, 2024

TIMING DETECTOR: ETL (CMS) AND HGTD (ATLAS)

ATLAS High Granularity Timing Detector (HGTD)

Barrel Timing Layer (BTL): LYSO bars + SiPM readout

Endcap Timing Layer (ETL)

2

CMS MIP Timing Detector (MTD)

	HGTD	MTD ETL
Position	$120 < R < 640 \text{ mm or } 2.4 < \eta < 4.0$	$315 < R < 1200 \text{ mm or } 1.6 < \eta < 3.0$
	z ± 3.5 m	z ± 3.0 m
Active area	~6.1 m ²	~14 m ²
Pixel in total	~3.6 M	~8.5 M
Occupancy	Up to 7 %	Up to 5%
TID	Up to 200 Mrad	Up to 100 Mrad
NIEL	Up to 2.5 x $10^{15} n_{eq}^{2}/cm^{2}$	Up to 2 x 10^{15} n _{eq} /cm ²
MIP	from 4 fC to 25 fC	from 10 fC to 25 fC
Time resolution	35 - 70 ps / hit, 30 - 50 ps / track with hits from two detector layers	40 - 50 ps / hit, 30 - 40 ps / track with hits from two detector layers
Sensor(LGAD)	15x15, IHEP and USTC IME sensors with carbon	16x16 HPK or FBK or IHEP-IME,, undecided yet

HGTD DETECTOR STRUCTURE

SENSOR OVERLAP IN HGTD

- 4-layer sensors with overlap from 20% up to 70%
 - Balance between timing resolution per track Vs the average number of hits

ETL DETECTOR STRUCTURE

Thermal screen
 Front face of electronics of front disc
 Front disc
 Rear face of electronics of front disc
 Front face of electronics of back disc
 Back disc
 Rear face of electronics of back disc
 Polyethylene Moderator (PM)
 Patch panels and cables
 Back support plate

- Top half of an ETL disk (front)
 - Power boards are shown in orange
 - Three flavors of readout boards shown in red, yellow and blue interface to 3, 6, and 7 modules, respectively.

Ref: CMS MTD TDR

https://cds.cern.ch/record/2667167 https://etl-rb.docs.cern.ch/

- Each endcap of the ETL detector contains 2 AI disks with embedded cooling loops.
- Each half disk is exactly the same

SENSOR OVERLAP IN ETL

• 4-layer sensors with overlap about 33%

- Low density arrangement -> More space to install the readout board and power board
 - Fiber and 12V power cable are close to the front-end module

Cross section of ETL readout unit

https://etl-rb.docs.cern.ch/

6

HITS PER TRACK IN HGTD AND ETL

Figure 3.12: Overall time association rate for tracks as function of pseudorapidity for (a) single-muon and (b) single-pion events without pileup. A bin-by-bin breakdown of correct (green shades) and incorrect (red/magenta) hit associations is also shown. <u>https://cds.cern.ch/record/2719855</u>

Tracks

ETL

TRACK-TIME RESOLUTION

(a) Single-muon events

(b) Single-pion events

- The resulting track-time resolution, i.e. the difference between the measured and true track-times ($t_{reco} t_{truth}$), is calculated for tracks extrapolated with one, two, three and four associated HGTD hits separately
- Benefit from more hits per track
 - More hits per track, better track-time resolution
- Ref: ATLAS HGTD TDR <u>https://cds.cern.ch/record/2719855</u>

CONSEQUENCE FOR ELECTRONICS DESIGN

- Higher sensor overlap
 - No enough space for data aggregation, clock distribution and fast control (lpGBT, VTRx+, fiber) and power distribution (bPOL) near the sensor range
 - Readout board
 - 1~2 lpGBT -> up to 12 lpGBT
 - BUT pcb complexity is more than 12 times
 - 8 layers -> 22 layers
 - Longer transmission line for 10 Gbps
 - More IR drop for power distribution -> Need to compensate the voltage drop

Peripheral electronics board **9** prototype in HGTD

IN-DETECTOR CONNECTIONS IN HGTD

Six types of PEB to be designed
4 Boards can be used both on front and back

- Flex-tails use to connect the front-end modules and PEB
 - Up to 19-layer stack-up flexes in one row
 - Lengths range from about 3 to about 70 cm
 - Full detector: 77 different lengths

CONSEQUENCE - BENEFIT

- Lower radiation requirement for data aggregation, clock distribution and fast control (lpGBT, VTRx+, fiber) and power distribution (bPOL)
- PEB could survive during HL-LHC Run4 (3~4 years)?

SUMMARY

- In-depth analysis and comparison of the electronic systems of the ATLAS HGTD and CMS MTD timing detectors
- Exploring their differences and similarities in terms of design concepts and technological implementations
- In fact, there is no absolute solution that is good or bad
- Solution that suits the project requirements is the best one

READOUT ASIC

Discriminato

TOT

ALTIROC pixel:

320MHz

From LpGBT

Preamplifier

ANALOG FRONT END

fast command eline

from IpGBT

From https://indico.cern.ch/event/1381495/contributions/5988493/ attachments/2869323/5163702/TWEPP2024 Soulier.pdf

From https://indico.cern.ch/event/1381495/contributions/5988475/a ttachments/2938155/5161178/ETROC2-TWEPP-2024-final.pdf

ALTIROC TDC

ALTIROC TOA TDC: Cycling Vernier Delay Line

- Resolution: 20ps Range: 2.5ns 7 bits
 - 130 nm=> 20 ps below the gate-propagation delay in 130nm technology => Vernier delay line configuration
- Cycling configuration used in order to reduce the total number of Delay Cells.
- DLLs needed to set automatically the Vctrl of the delay lines and to compensate for temperature, power variation

ETROC TDC

FRONT-END MODULE

HGTD

LV POWER DISTRIBUTION

Figure 3: LV conversion scheme for ETL detector