

Probing Electroweak Phase Transition at CEPC via Exotic Higgs Decays in 4b Final States

Zhen Wang, <u>Xu-Liang Zhu</u>, Elham Khoda, Shih-Chieh Hsu, Nikolaos Konstantinidis, Ke Li, Shu Li, M. J. Ramsey-Musolf, Yanda Wu, Yuwen Zhang *DOI: 10.31526/LHEP.2023.436*

The 2024 International Workshop on the CEPC

2024-10-25

Physics Motivation

 We are interested in the strong first-order electroweak phase transition in the "SM Higgs + Light Real Singlet Scalar" model:

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}a_1 |H|^2 S + \frac{1}{2}a_2 |H|^2 S^2 + b_1 S + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4 + \frac{1}{2}b_4 S^4 + \frac{1}{2}b_4$$

• Mass eigenstates: $h_1 = h \cos \theta + s \sin \theta$ (h_1 : singlet-like) $h_2 = -h \sin \theta + s \cos \theta$ (h_2 : SM-like Higgs)

Theoretical Prospects

 $H \rightarrow ss \rightarrow 4b$ $|\cos \theta| = 0.01$ 10^{0} **EWPT** viable: numerical $\rightarrow h_1 h_1$) 10^{-1} EWPT viable: bbTT (HL-LHC) semi analytic σSM 10^{-2} $\sigma \times \mathrm{BR}(h_2$ 0 4b (ILC) 10^{-3} 4b (CEPC) Future e^+e^- 4b (FCC-ee 10^{-4} 50 10 20 30 40 60 m_1 [GeV]

J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020). Z. Liu *et al., Chinese Phys. C* **41**, 063102 (2017).

Sample Production

- **Signal:** The samples are generated at 240 GeV. 50000 events per mass point from 5 to 60 GeV for electron and muon channel separately
- Generator: Madgraph5 and Pythia8
- Simulation and reconstruction: cepcsoft 0.1.1 , CEPC_v4

Sample Production

 Background: 2-Fermion, 4-Fermion, eeH, μμH as our background. Expect luminosity : 5 ab⁻¹ (also scaled to 20 ab⁻¹).

Process	$\int L$	Final states	X-sections (fb)	Comments	decay mode	branching ratio	relative uncertainty
	5 ab ⁻¹	ffH	203.66	all signals	$H \rightarrow b \bar{b}$	57.7%	+3.2%, -3.3%
	5 ab-1	e^+e^-H	7.04	including ZZ fusion	$H \to c \bar c$	2.91%	+12%, -12%
	5 ab-1	$\mu^+\mu^- H$	6.77		$H \to \tau^+ \tau^-$	6.32%	+5.7%, -5.7%
	5 ab-1	$ au^+ au^- H$	6.75		$H \to \mu^+ \mu^-$	2.19×10^{-4}	+6.0%, -5.9%
	5 ab-1	$ u \overline{ u} H$	46.29	all neutrinos (ZH+WW fusion)	$H \to WW^*$	21.5%	+4.3%, -4.2%
	5 ab-1	aā H	136.81	all quark pairs $(7 \rightarrow q\bar{q})$	$H \rightarrow ZZ^*$	2.64%	+4.3%, -4.2%
	5 4.5	AA 11	150.01	an quark pans (2) qq)	$H \rightarrow \gamma \gamma$	2.28×10^{-3}	+5.0%, -4.9%
2 fermion bac	kgounds				$H \rightarrow Z\gamma$	1.53×10^{-3}	+9.0%, -8.8%
Process		$\int L$	Final states	X-sections (fb) Comments	$H \rightarrow gg$	8.57%	+10%, -10%
$e^+e^- ightarrow e^+e^-$		5 ab ⁻¹	e^+e^-	24770.90	Γ_H	4.07 MeV	+4.0%, -4.0%

http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/#240-gev https://iopscience.iop.org/article/10.1088/1674-1137/43/4/043002/pdf lxslc7 : /cefs/data/DstData/CEPC240/CEPC_v4_update Tsung-Dao Lee Institute

- Same flavor opposite sign lepton pair with energy larger than 20 GeV
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- **Recoiled mass** of the lepton pair system should be within [124,140] GeV
- 4 jets are required to be reconstructed. **Reconstructed S particle** is decided by pairing them 2 by 2 and find the set with smallest mass difference.
- Number of energetic particles(energy > 0.4 GeV) in the 4jets should be larger than 40
- B-inefficiency : GBDT-based b-jet tagging algorithm. L_{b1} , L_{b2} , L_{b3} , L_{b4} should satisfy $Log10\left(\frac{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4}}{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4} + (1-L_{b1}) \times (1-L_{b2}) \times (1-L_{b3}) \times (1-L_{b4})}\right) < -4.0$

Thanks to Yu Bai. <u>Y. Bai *et al., Chinese Phys. C* **44**, 013001 (2020). TSUNG-DAO LEE INSTITUTE</u>

Cut Based Approach

TSUNG-DAO LEE INSTITUTE arXiv:2203.10184

• Signal Selection Efficiencies:

• Signal Distribution:

<7>

Cut Based Approach

• Signal:

TSUNG-DAO LEE INSTITUTE arXiv:2203.10184

- Singlet mass at 30 GeV
- Background:
 - IIH_bb (dominant)
 - Other IIH process
 - Non Higgs process

Selection	Signal ($m_s = 30$ GeV)	$\ell\ell Hbb$	other $\ell\ell H$	non Higgs
Original	8865	2.92×10^{4}	2.41×10^4	$3.79 imes 10^7$
Lepton pair selection	6042	1.83×10^4	1.20×10^4	1.32×10^6
Lepton pair mass	5537	1.65×10^{4}	$1.07 imes 10^4$	6.17×10^{5}
Jet selection and pairing	4054	7947	4661	3698
B-inefficiency	2210	131	15	14

Cutflow Table

M_{bb}[GeV]

- Trained the variables after some loose selections :
- Same flavor opposite sign lepton pair with energy larger than 20 GeV
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- Recoiled mass of the lepton pair system should be within [124,140] GeV

10 BDTs are trained with 10 different mass points from 15GeV to 60 GeV

lep_pt

used in

training

TSUNG-DAO LEE INSTITUTE

- Variables jet_energy
 - jet_inv_mass

and used in the fitting and limit setting.

• opening_angle

Output of BDT classifier is used as the discriminant

- jet_recoil_mass
- S_mass
- btag_ineff
- Y12

- Y23
- Y34
- Y45
- Y56

MARCH 21, 2012 BY UPAUDEL

Helicity angle calculations

A useful quantity in many analyses is the helicity angle. In the reaction $Y \rightarrow X \rightarrow a + b$, the helicity angle of particle a is the angle measured in the rest frame of the decaying parent particle, X, between the direction of the decay daughter a and the direction of the grandparent particle Y.

- jetcoshel
 sscosphi
- sscosphi

< 9 >

BDT Approach

TSUNG-DAO LEE INSTITUTE arXiv:2203.10184

• Example of BDT inputs with 15 GeV signal

Systematic Uncertainty

- Systematic uncertainty from *luminosity and lepton identification* are considered to be small.
- **Event yield** of all kinds of backgrounds are conservatively considered by varying event yields by 5% for dominant process and 100% for other processes.
- Flavor tagging uncertainty is estimated on ZZ->qq+mumu control sample and yields 0.78% for 2jet analysis, we conservatively set this term to 1%.
- Jet energy resolution is estimated by MC samples.

Limit Setting

• Current limit of BDT approach.

Lepton collider does have advantages in sensitivity compared with hadronic colliders

- A search for exotic decays of the Higgs boson into a pair of spin-zero singlet-like particles is done with 5 ab⁻¹ simulation data with CEPC (also scaled to **20 ab⁻¹**).
- This realistic study yields a similar exclusion limit compared to the theoretical projections
- The study with 4b final states could conclusively test the possibility of an SFOEWPT in the extended-SM with a light singlet of mass as low as 15 GeV.

Probing Neutral Triple Gauge Couplings via $Z\gamma(\ell^+\ell^-\gamma)$ Production at e^+e^- Collider Danning Liu, Rui-Qing Xiao, Shu Li, Hong-Jian He, John Ellis, Rui Yuan

October, 2024 CEPC WP

Standard Model Effective Field Theory

- Standard Model Effective Field Theory a model-independent way to explore new physics beyond the SM
 - Higher-dimensional operators constrained by SU(2) \times U(1) symmetry, contributing to new physics :
 - Dimension-8 contributions scaled by quadratic power of new physics scale :

 $\Delta \mathcal{L}_{dim8} = \sum_{i} \frac{\widetilde{c_j}}{\widetilde{\Lambda}^4} O_i = \sum_{i} \frac{sign(\tilde{c}_j)}{\Lambda_j^4} O_j$

- Neutral Triple Gauge Couplings (nTGCs) : $Z\gamma Z^*$, $Z\gamma \gamma^*$
- Constrain Wilson coefficients with global analysis of experiment data
 - Non-zero c_i would indicate any BSM : Masses, spins, quantum number of new particles

Phys.Rev.D 107 035005

Theoretical basis :

Phys.Rev.D 108 L111704

Sci.China Phys.Mech.Astro 64 221062 (2021)

TSUNG-DAO LEE INSTITUTE

Danning Liu | 2024 CEPC WP

Introduction to nTGCs

- nTGCs: forbidden at SM tree level but first arise from dimension-8 contributions
- Effective Field Approach:
 - Definitions of pure gauge operators of dimension-8 that contribute to nTGCs:

 h_4^Z

$$g\mathcal{O}_{G+} = B_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$\mathcal{O}_{\widetilde{B}W} = i H^{\dagger}\widetilde{B}_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H + h.c.,$$

-1 λ -1

- Effective Vertex Approach:
 - We denote:

$$\begin{split} h_4^V &= 2h_5^V \\ h_4^Z &= \frac{c_W}{s_W}h_4^\gamma \\ h_3^Z &= -\frac{\mathrm{sign}(\tilde{c}_{G+})}{\Lambda_{G+}^4} \frac{v^2 M_Z^2}{s_W c_W} \equiv \frac{r_4}{[\Lambda_{G+}^4]}, \\ h_3^Z &= \frac{\mathrm{sign}(\tilde{c}_{\widetilde{B}W})}{\Lambda_{\widetilde{B}W}^4} \frac{v^2 M_Z^2}{2s_W c_W} \equiv \frac{r_3^Z}{[\Lambda_{\widetilde{B}W}^4]}, \\ h_3^\gamma &= -\frac{\mathrm{sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4} \frac{v^2 M_Z^2}{2c_W^2} \equiv \frac{r_3^\gamma}{[\Lambda_{G-}^4]}. \\ \end{split}$$

nTGC Searches at CEPC

- Experimental configurations:
 - Full simulation with CEPC official software (V4)
 - $\sqrt{s} = 240$ GeV, with an integrated luminosity of 20 ab^{-1}
 - Signal sample generated by MadGraph5 and showered by Pythia8
- General nTGC topology
 - $e^+e^- \rightarrow Z(\ell^+\ell^-)\gamma$, where Z decays to a pair of charged leptons
 - Two opposite sign same flavour charged leptons
 - One signal photon

Analysis Strategy

Traditional selection-based analysis relies on the clear signal signature

Strongly suppress possible background contributions

Two isolated leptons

Remove jet-related background contributions Remove higher-order corrections Guarantee that the enhancement of cross section comes from nTGC effect

Jet veto selection

Invariant mass selection —

Suppress Z plus final-state radiation photon scenario

Ensure that final-state leptons decay from on-shell Z boson

李政道研究所 TSUNG-DAO LEE INSTITUTE

Analysis Strategy

- Contributions from possible processes:
 - Signal: nTGC contributions
 - Background :
 - Irreducible processes (Z with an initial or final state radiation photon)
 - Other processes
 - 2-fermions, 4-fermions
 - Higgs background

	F
e-	Z Z Z Z Z
\rightarrow	NE
e^+ Z/ γ^*	m

Variables	SM Backgrounds	SM $Z\gamma$	h_4	h_3^γ	h_3^Z
$N_{\rm pho} \geqslant 1$	11712	1572	1629	1747	1710
$\dot{N_{ m lep}}=2$	1152	587	624	696	675
$N_{ m jet}=0$	811	587	624	696	675
$\Delta R(\ell,\ell)\!<\!3$	698	548	585	656	634
$ m_{\ell\ell}\!-\!m_Z \!<\!10{ m GeV}$	303	192	226	288	271
$(m_{\ell\ell}\!+\!m_{\ell\ell\gamma})\!>\!182{ m GeV}$	300	192	226	288	271

Variables	Cut
$N_{ m lep}$	2 signal OSSF leptons with leading lepton $p_T^{\text{lep}} > 30 \text{ GeV}$
$N_{ m pho}$	$\geq 1 ext{ signal photon with } p_T^{\gamma} > 35 ext{ GeV}$
$N_{ m jet}$	0
$\Delta R(\ell,\ell)$	< 3
$m_{\ell\ell}$	$ m_{\ell\ell}-m_Z < 10 { m GeV}$
$m_{\ell\ell}+m_{\ell\ell\gamma}$	$> 182 { m ~GeV}$

Cut-flow table:

Cross section[fb] after applying sequential selections

Analysis Optimization

- Unlike traditional measurements, a special kinematic structure ϕ applied to reach better sensitivity
 - Defined as the angle between scattering plane and decay plane
 - Direct evidence of the interference between the SM and pure BSM effects

Analysis Optimization

- Parameterization of nTGCs: $\sigma = \sigma_0(SM) + \sigma_1(SM \times nTGC) + \sigma_2(nTGC^2)$
- Similarly, we define the normalized angular distribution function respectively:

Interference term: dominated by $\cos 2\phi$ term, significantly related to s/M_Z^2

SM and Quadratic term: dominated by the constant term $\frac{1}{2\pi}$ and ϕ -dependent term which is suppressed by M_Z^2/\sqrt{s}

ϕ could be a good candidate to probe nTGCs

TSUNG-DAO LEE INSTITUTE

Danning Liu | 2024 CEPC WP

Analysis Optimization

- Optimization applied with net cross section for significance enhancement
 - Boudaries are set to distinguish events with positive or negative cross sections

TSUNG-DAO LEE INSTITUTE

Danning Liu | 2024 CEPC WP

0.8

0.6

0.4

-0.4

-0.8

-1

Systematic Uncertainty

- Systematic uncertainties are categorised into two types :
 - Assigned on signal yields
 - Theoretical uncertainty : 0.5% uncertainty for modeling
 - Experimental uncertainty : luminosity, object identification, object reconstruction resolution, energy resolution, and detector acceptance
 - Assigned on **background** yields
 - Floating event yields to account for background modeling
 - Dominant background: varied by 5% up/down
 - Other backgrounds : varied by 100% up/down

Processes	Statistical	Theoretical	Experimental
$Z\gamma$ production ($e^+e^- \rightarrow \ell^+\ell^-\gamma$)	0.52%	0.5%	(+2.96, -3.15)%
Fixed background	Don Oth	ninant backgro ner background	ound: 5% ds: 100%

Results

•	Expected	exclusion	constraints	acchieved	from ϕ	variable
---	----------	-----------	-------------	-----------	-------------	----------

Expected Limits							
Form Factors (h_i^V) New Physics Scales $(\Lambda_j \text{ [TeV]})$							
h_4	$[-2.0 imes 10^{-4}, 2.0 imes 10^{-4}]$	Λ_{G+}	1.55				
h_3^γ	$[-9.7 \times 10^{-4}, 9.7 \times 10^{-4}]$	Λ_{G-}	0.76				
h_3^Z	$[-1.1 imes 10^{-3}, 1.1 imes 10^{-3}]$	$\Lambda_{\widetilde{B}W}$	0.85				
		$\Lambda_{\widetilde{BW}}$	1.05				

Results

• To understand the correlation of sensitivitiy reaches between pairs of nTGC operators

- nTGCs provide unique probe of dimension-8 SMEFT operators, and serves as a new pathway to explore new physics beyond the SM
- We present the search for nTGCs at CEPC at $\sqrt{s} = 240$ GeV with an integrated luminosity of 20 ab^{-1}
- First exploration with a more realistic simulation in collaboration with the latest nTGC theoretical progress at lepton colliders
 - With SU(2)×U(1) invariant gauge symmetry applied
- Results accepted by FOP journal as "Cover Article"

- Thank You -

Thanks!

Limit Setting

< 15 >

Backup

• Jet energy resolution

P.-Z. Lai *et al* 2021 *JINST* **16** P07037

< 16 >

Backup

• Backup

$m_1[GeV]$	<i>a</i> ₂	b_3	b_4	D_width	BR
5	0.00379269019	0.00087284094	3.16227766017e-05	7.3774e-05	0.01780479
3	0.00033598183	0.00693322201	8.91250938133e-07	1.0348e-06	0.00025421
10	0.02511886432	0.01954047457	0.00125892541179	0.0030277	0.42627589
10	0.00199526231	0.04908345294	1.58489319246e-05	2.1351e-05	0.00521904
15	0.05011872336	0.00389883725	0.00446683592151	0.011795	0.73632455
15	0.00375837404	0.19540474574	7.94328234724e-05	5.9206e-05	0.01422012
20	0.00630957344	0.49083452948	0.00025118864315	0.0001866	0.04347394
25	0.01	0.97934363956	0.00063095734448	0.00044524	0.09859974
30	0.01678804018	1.55215506742	0.00125892541179	0.0011898	0.22613126
35	0.02511886432	2.46	0.00251188643151	0.0025006	0.38033656
40	0.02660725059	3.89883725345	0.00398107170553	0.0025799	0.38771480
45	0.04216965034	4.90834529482	0.00630957344480	0.0058611	0.58957125
50	0.04216965034	7.77920304401	0.01	0.0050107	0.55126677
55	0.06309573445	9.79343639562	0.01584893192461	0.0089054	0.68549957
60	0.05956621435	15.5215506742	0.02511886431509	0.0045989	0.53001523

Table. Parameters and related BRs that satisfy a strong 1-st order electroweak phase transition. The orange shading represent parameter when BR is at its upper bound, and blue shading represent the lower bound.

Mass	BDT Limits	Theory
20GeV	0.0005	0.0006
30GeV	0.0006	0.0005

Limits from BDT and Theory

• Backup

10 BDTs are trained with 10 different signal samples from 15GeV to 60 GeV

Number of events in one training:

•	Number of training and testing events	
•	Signal training events :	30000
•	Signal testing events :	7806
•	Signal training and testing events:	37806
•	Dataset[dataset] : Signal due to the	e preselec
•	Background training events :	400000
•	Background testing events :	166345
•	Background training and testing events:	566345

