

Probing Electroweak Phase Transition at CEPC via Exotic Higgs Decays in 4b Final States

Zhen Wang, Xu-Liang Zhu, Elham Khoda, Shih-Chieh Hsu, Nikolaos Konstantinidis, Ke Li, Shu Li, M. J. Ramsey-Musolf, Yanda Wu, Yuwen Zhang DOI: 10.31526/LHEP.2023.436

The 2024 International Workshop on the CEPC

2024-10-25

Physics Motivation

• We are interested in the strong first-order electroweak phase transition in the "SM Higgs + Light Real Singlet Scalar" model:

$$
V=-\mu^2|H|^2+\lambda|H|^4+\frac{1}{2}a_1|H|^2S+\frac{1}{2}a_2|H|^2S^2+b_1S+\frac{1}{2}b_2S^2+\frac{1}{3}b_3S^3+\frac{1}{4}b_4S^4
$$

• Mass eigenstates: $h_1 = h \cos \theta + s \sin \theta$ (h_1 : singlet-like) $h_2 = -h \sin \theta + s \cos \theta$ (h_2 : SM-like Higgs)

Theoretical Prospects

 $H \rightarrow ss \rightarrow 4b$ $|\cos \theta| = 0.01$ $10⁰$ EWPT viable: жии numerical $\rightarrow h_1 h_1$ 10^{-1} EWPT viable: Global fit (HL-I $\frac{1}{b b \tau \tau}$ (HL-LHC) semi analytic $\sigma_{\rm SM}$ 10^{-2} $\sigma \times \text{BR}(h_2$ O ╱ $4b$ (ILC) 10^{-3} $4b$ (CEPC) Future e^+e^- 4b (FCC-ee 10^{-4} 10 20 30 40 50 60 m_1 [GeV]

[J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.115035) Phys. Rev. D **101**, [115035 \(2020\).](https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.101.115035&v=8de80cd2) Z. Liu et al., [Chinese Phys. C](https://iopscience.iop.org/article/10.1088/1674-1137/41/6/063102) **41**, 063102 (2017).

Sample Production

 $< 4 >$

- **Signal:** The samples are generated at 240 GeV. 50000 events per mass point from 5 to 60 GeV for electron and muon channel separately
- **Generator:** Madgraph5 and Pythia8
- **Simulation and reconstruction:** cepcsoft 0.1.1 , CEPC_v4

Sample Production

• Background: 2-Fermion, 4-Fermion, *eeH*, μμH as our background. Expect luminosity : 5 ab⁻¹ (also scaled to 20 ab^{-1}).

[http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/#240-gev](http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/) <https://iopscience.iop.org/article/10.1088/1674-1137/43/4/043002/pdf> lxslc7 : /cefs/data/DstData/CEPC240/CEPC_v4_update**TSUNG-DAO LEE INSTITUTE**

- **Same flavor opposite sign lepton pair** with energy larger than 20 GeV
- Invariant lepton pair mass should be within the **Z mass window [77.5,104.5] GeV**
- **Recoiled mass** of the lepton pair system should be within [124,140] GeV
- 4 jets are required to be reconstructed. **Reconstructed S particle** is decided by pairing them 2 by 2 and find the set with smallest mass difference**.**
- **Number of energetic particles**(energy > 0.4 GeV) in the 4jets should be larger than 40
- B-inefficiency: GBDT-based b-jet tagging algorithm. L_{b1} , L_{b2} , L_{b3} , L_{b4} should satisfy $Log10\left(\frac{L_{b1}\times L_{b2}\times L_{b3}\times L_{b4}}{L_{b1}\times L_{b2}\times L_{b3}\times L_{b4}}\right)$ $L_{b1} \times L_{b2} \times L_{b3} \times L_{b4} + (1 - L_{b1}) \times (1 - L_{b2}) \times (1 - L_{b3}) \times (1 - L_{b4})$ <-4.0

Thanks to Yu Bai. Y. Bai et al., [Chinese Phys. C](https://iopscience.iop.org/article/10.1088/1674-1137/44/1/013001) **44**, 013001 (2020). **TSUNG-DAO LEE INSTITUTE**

Cut Based Approach

arXiv:2203.10184

• **Signal Selection Efficiencies:** • **Signal Distribution:**

 $< 7 >$

Cut Based Approach

• **Signal:**

arXiv:2203.10184

- **Singlet mass at 30 GeV**
- **Background:**
	- **llH_bb (dominant)**
	- **Other llH process**
	- **Non Higgs process**

Cutflow Table

 M_{bb} [GeV]

- Trained the variables after some loose selections :
- **Same flavor opposite sign lepton pair** with energy larger than 20 GeV
- Invariant lepton pair mass should be within the **Z mass window [77.5,104.5] GeV**
- **Recoiled mass** of the lepton pair system should be within [124,140] GeV

10 BDTs are trained with 10 different mass points from 15GeV to 60 GeV

lep pt

used in

training

TSUNG-DAO FF INSTITUTE

- jet energy **Variables**
	- jet inv mass
	- opening_angle

and used in the fitting and limit setting.

Output of BDT classifier is used as the discriminant

- jet recoil mass
- S_mass
- **btag_ineff**
- Y12
- Y23
- Y34
- Y45
-
- Y56

MARCH 21, 2012 BY UPAUDEL

Helicity angle calculations

A useful quantity in many analyses is the helicity angle. In the reaction $Y \rightarrow X \rightarrow a + b$, the helicity angle of particle a is the angle measured in the rest frame of the decaying parent particle, X, between the direction of the decay daughter a and the direction of the grandparent particle Y.

ietcoshel

< 9 >

• sscosphi

BDT Approach

• Example of BDT inputs with 15 GeV signal

Systematic Uncertainty

- Systematic uncertainty from *luminosity and lepton identification* are considered to be small.
- **Event yield** of all kinds of backgrounds are conservatively considered by varying event yields by 5% for dominant process and 100% for other processes.
- **Flavor tagging uncertainty** is estimated on ZZ->qq+mumu control sample and yields 0.78% for 2jet analysis, we conservatively set this term to 1%.
- **Jet energy resolution** is estimated by MC samples.

Limit Setting

• Current limit of BDT approach.

Lepton collider does have advantages in sensitivity compared with hadronic colliders

- A search for exotic decays of the Higgs boson into a pair of spin-zero singlet-like particles is done with 5 ab-1 simulation data with CEPC (also scaled to **20 ab-1**).
- This realistic study yields a similar exclusion limit compared to the theoretical projections
- The study with 4b final states could conclusively test the possibility of an SFOEWPT in the extended-SM with a light singlet of mass as low as 15 GeV.

Danning Liu, Rui-Qing Xiao, Shu Li, Hong-Jian He, John Ellis, Rui Yuan **Probing Neutral Triple Gauge Couplings via** *Zγ*(l ⁺ l ⁻ $γ$) Production at e ⁺ e ⁻ Collider

October, 2024 CEPC WP

Standard Model Effective Field Theory

- Standard Model Effective Field Theory a model-independent way to explore new physics beyond the SM
	- Higher-dimensional operators constrained by $SU(2) \times U(1)$ symmetry, contributing to new physics :
		- Dimension-8 contributions scaled by quadratic power of new physics scale :

 $\Delta \mathcal{L}_{dim8} = \sum$ i $\widetilde{c_j}$ $\widetilde{\Lambda}^4$ $O_i = \sum$ i $sign(\tilde{c}_j)$ Λ^4_j $\frac{(y)}{4}$ $\frac{0}{j}$

- Neutral Triple Gauge Couplings (nTGCs) : $Z\gamma Z^*$, $Z\gamma\gamma^*$
- Constrain Wilson coefficients with global analysis of experiment data
	- Non-zero c_i would indicate any BSM : Masses, spins, quantum number of new particles

[Phys.Rev.D 107 035005](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.035005)

Theoretical basis :

Phys.Rev.D 108 L111704

[Sci.China Phys.Mech.Astro 64 221062 \(2021\)](https://link.springer.com/article/10.1007/s11433-020-1617-3)

TSUNG-DAO LEE INSTITUTE

Danning Liu | 2024 CEPC WP

Introduction to nTGCs

- nTGCs: forbidden at SM tree level but first arise from dimension-8 contributions
- Effective Field Approach:
	- Definitions of pure gauge operators of dimension-8 that contribute to nTGCs:

$$
gO_{G+} = \widetilde{B}_{\mu\nu} W^{a\mu\rho} (D_{\rho} D_{\lambda} W^{a\nu\lambda} + D^{\nu} D^{\lambda} W^{a}_{\lambda\rho}),
$$

\n
$$
gO_{G-} = \widetilde{B}_{\mu\nu} W^{a\mu\rho} (D_{\rho} D_{\lambda} W^{a\nu\lambda} - D^{\nu} D^{\lambda} W^{a}_{\lambda\rho}),
$$

\n
$$
O_{\widetilde{B}W} = i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{D_{\rho}, D^{\nu}\} H + \text{h.c.},
$$

- Effective Vertex Approach:
	- We denote:

$$
h_4 = -\frac{\text{sign}(\tilde{c}_{G+})}{\Lambda_G^4} \frac{v^2 M_Z^2}{s_W c_W} = \frac{r_4}{[\Lambda_{G+}^4]} , \qquad h_3^V = 0, \qquad \text{for } \mathcal{O}_{G+} ,
$$

\n
$$
h_4^Z = 2h_5^V
$$

\n
$$
h_4^Z = \frac{c_W}{s_W} h_4^V
$$

\n
$$
h_3^Z = \frac{\text{sign}(\tilde{c}_{\tilde{B}W})}{\Lambda_{\tilde{B}W}^4} \frac{v^2 M_Z^2}{2s_W c_W} = \frac{r_3^Z}{[\Lambda_{\tilde{B}W}^4]} , \qquad h_3^{\gamma}, h_4^V = 0, \qquad \text{for } \mathcal{O}_{\tilde{B}W} ,
$$

\n
$$
h_3^{\gamma} = -\frac{\text{sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4} \frac{v^2 M_Z^2}{2c_W^2} = \frac{r_3^{\gamma}}{[\Lambda_{G-}^4]} . \qquad h_3^Z, h_4^V = 0, \qquad \text{for } \mathcal{O}_{G-} ,
$$

nTGC Searches at CEPC

- Experimental configurations:
	- **Full simulation** with CEPC official software (V4)
	- $\sqrt{s} = 240$ GeV, with an integrated luminosity of 20 ab^{-1}
	- Signal sample generated by MadGraph5 and showered by Pythia8
- General nTGC topology
	- $e^+e^- \rightarrow Z(\ell^+\ell^-)\gamma$, where Z decays to a pair of charged leptons
	- Two opposite sign same flavour charged leptons
	- One signal photon

Analysis Strategy

• Traditional selection-based analysis relies on the clear signal signature

Strongly suppress possible background contributions

Two isolated leptons

Remove jet-related background contributions Remove higher-order corrections **Guarantee that the enhancement of cross section comes from nTGC effect**

Jet veto selection

Invariant mass selection Suppress Z plus final-state radiation photon scenario

Ensure that final-state leptons decay from on-shell Z boson

2γ Z *MMMM* Z/γ^* v_{Λ}

Analysis Strategy

- Contributions from possible processes:
	- Signal: nTGC contributions
	- Background :
		- Irreducible processes (Z with an initial or final state radiation photon)
		- Other processes
			- 2-fermions, 4-fermions
			- Higgs background

Cross section[fb] after applying sequential selections

Analysis Optimization

- Unlike traditional measurements, a special kinematic structure ϕ applied to reach better sensitivity
	- Defined as the angle between scattering plane and decay plane
	- Direct evidence of the interference between the SM and pure BSM effects

Analysis Optimization

- Parameterization of nTGCs: $\sigma = \sigma_0(SM) + \sigma_1(SM \times nTGC) + \sigma_2(nTGC^2)$
- Similarly, we define the normalized angular distribution function respectively:

Interference term: dominated by cos2 ϕ term, significantly related to s/M_Z^2

SM and Quadratic term: dominated by the constant term $\frac{1}{2\pi}$ and ϕ -dependent term which is suppressed by M_Z^2/\sqrt{s}

could be a good candidate to probe nTGCs

TSUNG-DAO LEE INSTITUTE

Danning Liu | 2024 CEPC WP

Analysis Optimization

- Optimization applied with net cross section for significance enhancement
	- Boudaries are set to distinguish events with positive or negative cross sections

Danning Liu | 2024 CEPC WP

 0.8

 0.6

 0.4

 $0.2^{+0.2}_{-0.2}$

 -0.4

 -0.6

 -0.8

-1

Systematic Uncertainty

- Systematic uncertainties are categorised into two types :
	- Assigned on signal yields
		- Theoretical uncertainty : 0.5% uncertainty for modeling
		- Experimental uncertainty : luminosity, object identification, object reconstruction resolution, energy resolution, and detector acceptance
	- Assigned on background yields
		- Floating event yields to account for background modeling
		- Dominant background: varied by 5% up/down
		- Other backgrounds : varied by 100% up/down

Results

Results

• To understand the correlation of sensitivitiy reaches between pairs of nTGC operators

- nTGCs provide unique probe of dimension-8 SMEFT operators, and serves as a new pathway to explore new physics beyond the SM
- We present the search for nTGCs at CEPC at $\sqrt{s} = 240$ GeV with an integrated luminosity of 20 ab^{-1}
- First exploration with a more realistic simulation in collaboration with the latest nTGC theoretical progress at lepton colliders
	- With $SU(2)\times U(1)$ invariant gauge symmetry applied
- Results acceptted by FOP journal as "Cover Article"

Thank You

Thanks!

Limit Setting

 < 15

Backup

• Jet energy resolution

P.-Z. Lai *et al* 2021 *JINST* **16** P07037

Backup

• Backup

Table. Parameters and related BRs that satisfy a strong 1-st order electroweak phase transition. The orange shading represent parameter when BR is at its upper bound, and blue shading represent the lower bound.

Limits from BDT and Theory

• Backup

10 BDTs are trained with 10 different signal samples from 15GeV to 60 GeV

Number of events in one training:

