Parton fragmentation functions from NPC23

Hongxi Xing **South China Normal University**

The 2024 international workshop on CEPC

2024.10.22-27

QCD confinement - hadronization

QCD as the fundamental theory of strong interaction

Field, Feynman, NPB 1978

QCD confinement - hadronization

The first concept of parton fragmentation functions

INCLUSIVE PROCESSES AT HIGH TRANSVERSE MOMENTUM

S. M. Berman, J. D. Bjorken and J. B. Kogut

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

ABSTRACT

We calculate the distribution of secondary particles C in processes $A + B \rightarrow C +$ anything at very high energies when (1) particle C has transverse momentum p_T far in excess of 1 GeV/c, (2) the basic reaction mechanism is presumed to be a deepinelastic electromagnetic process, and (3) particles A, B and C are either lepton (l), photon (γ) , or hadron (h). We find that such distribution functions possess a scaling behavior, as governed by dimensional analysis. Furthermore, the typical behavior even for A, B and C all hadrons, is a power law decrease in yield with increasing p_T, implying measurable yields at NAL of hadrons, leptons, and photons produced in 400 GeV pp collisions even when the observed secondary-particle p_T exceeds 8 GeV/c. There are similar implications for particle yields from $e^{\pm} - e^{-}$ collidingbeam experiments and for hadron yields in deep-inelastic electroproduction (or neutrino processes). Among the processes discussed in some detail are $ll \rightarrow h$, $\gamma \gamma \rightarrow h$, $\ell h \rightarrow h$, $\gamma h \rightarrow h$, $\gamma h \rightarrow \ell$, as well as $hh \rightarrow \ell$, $hh \rightarrow \gamma$, $hh \rightarrow W$, and $W \rightarrow h$, where W is the conjectured weak-interaction intermediate boson. The basis of the calculation is an extension of the parton model. - The new ingredient necessary to calculate the processes of interest is the inclusive probability for finding a hadron emerging from a parton struck in a deep-inelastic collision. This probability is taken to have a form similar to that generally presumed for finding a parton in an energetic hadron. We study the dependence of our conclusions on the validity of the

James Bjorken, 1934-2024

Berman, Bjorken, Kogut, PRD 1971

Multiple channels to explore parton hadronization

Indispensable joint efforts from experiments and QCD theory

Lepton-lepton colliders

BEPC, SuperKEKB

- No hadron in the initial-state
- Hadrons are emerged from energy
- Not ideal for studying hadron structure, but ideal for FFs
- Hadrons in the initial-state Hadrons are emerged from
- energy
- Currently used for studying hadron structure and FFs

Hadron-hadron colliders

lepton-hadron colliders

RHIC, LHC

glue

HERA, JLab, EIC/EicC

- Hadrons in the initial-state
- Hadrons are emerged from energy
- Ideal for studying hadron structure, can also involve FFs

Fragmentation Functions

Factorization in single inclusive hadron production in electron-positron collisions \bullet

- Large momentum transfer $Q \gg \Lambda_{OCD}$
- High precision control of $\hat{\sigma}$ \bullet
- D: fragmentation function, also called parton decay function, encodes the information on how patrons produced in hard scattering hadronize into the detected color singlet hadronic bound state.

$$\sigma^{e^+e^- \to hX} = \sum \hat{\sigma}_{e^+e^- \to i} \otimes D_{i \to h}$$

Methodology for global extraction of FFs

Fitting Framework

Comparison of kaon FFs

Gao, Liu, Shen, **HX**, Zhao, arXiv: 2407.04422

FF global fitting

It is proved that FFs are universal, why they look different?

- Different selections of experimental data (kinematic cut)
- Different parametrization for FFs at initial scale, NNFF unbiased? DSS biased?
- Everything else is the same

More measurements are needed to further constrain the FFs!

New opportunities in probing FFs at LHC

Jet fragmentation function

Chien, Kang, Ringer, Vitev, HX, JHEP (2016)

 $\sigma^{pp \to J(h)X} = f_{i/p} \otimes f_{j/p} \otimes \hat{\sigma}_{ij \to k} \otimes \mathscr{G}_{k \to J(h)}$ $\mathcal{G}_{i \to J(h)} = \mathcal{J}_{ij} \otimes D_{j \to h}$

Light hadrons work very well

 $d\sigma$ $dp_T d\eta$

- Failed to describe D meson production in jet using KKK08 FFs

Heavy flavor in jet

Leads to new constraint of heavy flavor FFs using measurement of D in jet

Jet fragmentation function for J/ψ

 $\frac{d\sigma^{J/\psi}}{dp_T d\eta dz_h} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes \mathcal{G}_c^{J/\psi} \qquad \mathcal{G}_i^{J/\psi}(z,z_h,p_{\text{jet}}^+R,\mu) = \sum_j \int_{z_h}^1 \frac{dz'_h}{z'_h} \mathcal{J}_{ij}(z,z_h/z'_h,p_{\text{jet}}^+R,\mu)$

Disagreement between default Pythia and data $\lambda_F = \begin{cases} New \text{transversely polarized} \\ He w \text{transversely pola$

Heavy flavor in jet

 $\times D_j^{J/\psi}(z'_h,\mu) + \mathcal{O}(m_{J/\psi}^2/(p_{\text{iet}}^+R)^2)$

Kang, Qiu, Ringer, HX, Zhang **PRL (2017)**

New opportunities in probing FFs at LHC

Inclusive hadron production

$\sigma^{pp \to hX} = f_{i/p} \otimes f_{j/p} \otimes \hat{\sigma}_{ij}$

Only sensitive to the area of FFs

Inclusive hadron production

 $\sigma^{pp \to J(h)X} = f_{i/p} \otimes f_{j/p} \otimes \hat{\sigma}_{ij}$

$$_{\rightarrow k} \otimes D_{k \rightarrow h} \propto \int dz D(z)$$

$$_{\to k} \otimes \mathscr{G}_{k \to J(h)} \propto \int_{z_h}^1 dz D(z) \qquad z_h = \frac{H}{H}$$

Scan the area of FFs with different low z limit using jet

Nonperturbative Physics Collaboration - NPC (SJTU+SCNU+IMP)

- Gao, Liu, Shen, **HX**, Zhao, PRL, 2024 Gao, Liu, Shen, **HX**, Zhao, arXiv: 2407.04422
- First time including jet fragmentation data
- Joint determination of FFs to charge pion/kaon/proton at NLO
- Strong selection criteria to ensure validity of leading twist factorization
- "Unbiased" parametrization of FFs

$$zD_{i}^{h}(z,Q_{0}) = z^{\alpha_{i}^{h}}(1-z)^{\beta_{i}^{h}}\exp\left(\sum_{n=0}^{m}a_{i,n}^{h}(\sqrt{z})^{n}\right)$$

	Experiments	N_{pt}	χ^2	χ^2/N_{pt}	
	ATLAS 5.02 TeV $\gamma + j$	6	9.6	1.61	
	CMS 5.02 TeV $\gamma + j$	4	11.1	2.78	
	ATLAS 5.02 TeV $Z + h$	9	22.2	2.47	
)	CMS 5.02 TeV $Z + h$	11	6.2	0.56	
	LHCb 13 TeV $Z + j$	20	30.6	1.53	
	ATLAS 5.02 TeV inc. jet	63	67.9	1.08	
	ATLAS 7 TeV inc. jet	103	91.3	0.89	
	ATLAS 13 TeV dijet	280	191.6	0.68	
	pp hadron in jet sum	496	430.5	0.87	
	ALICE 13 TeV	49	45.0	0.92	
	ALICE 7 TeV	37	36.3	0.98	
	ALICE 5.02 TeV	34	37.5	1.10	
	ALICE 2.76 TeV	27	31.8	1.18	
	STAR 200 GeV	60	42.2	0.70	
	pp inclusive sum	207	192.8	0.93	
	H1 [†]	16	12.5	0.78	1
	H1 (asy.) †	14	12.2	0.87	
	ZEUS [†]	32	65.5	2.05	
	COMPASS 06 (D)	124	107.3	0.87	
	COMPASS 16 (p)	97	56.8	0.59	
	SIDIS sum	283	254.4	0.90	1
	$OPAL \ Z \to q\bar{q}$	20	16.3	0.81	1
	ALEPH $Z \to q\bar{q}$	42	31.4	0.75	
	DELPHI $Z \to q\bar{q}$	39	12.5	0.32	
	DELPHI $Z \rightarrow b\bar{b}$	39	23.9	0.61	
	SLD $Z \to q\bar{q}$	66	53.0	0.8	
	SLD $Z \to b\bar{b}\bar{b}$	66	82.0	1.24	
	SLD $Z \to c\bar{c}$	66	76.5	1.16	
	TASSO 34 GeV inc. had.	3	2.7	0.9	
	TASSO 44 GeV inc. had.	5	4.3	0.86	
	TPC 29 GeV inc. had.	12	11.6	0.97	
	OPAL (202 GeV) inc. had. †	17	24.2	1.42	
	DELPHI (189 GeV) inc. had.	9	15.3	1.70	
_	SIA sum	384	353.8	0.92	1
	Global total	1370	1231.5	0.90	

 Higher precision determination of FFs for charged hadron

Gao, Liu, Shen, HX, Zhao, PRL, 2024

Comparison with SIA data

Impact from SIA

Comparison with SIA data

Impact from SIA

Comparison with SIA data

Impact from SIA

Impact from SIA

Impact of each data set

Impact from SIA

The importance of heavy flavor tagging

18

Impact of each data set

TAS

OPAL

DELPHI

Impact from SIA

The importance of heavy flavor tagging

1.0

♦ NPC23 vs. others

- General agreement for u/d quark to pion
- Discrepancies for FFs to kaon/ proton and gluon FFs
- Future benchmark works involving different groups are needed to clarify the discrepancies

LHAPDF 6.5.4

Main page	PDF sets Class hierarchy Examples More		Q- Search
2070000	NPC23_Plp_nlo	(tarball) (info file) 127	1
2070200	NPC23_KAp_nlo	(tarball) (info file) 127	1
2070400	NPC23_PRp_nlo	(tarball) (info file) 127	1
2070600	NPC23_PIm_nlo	(tarball) (info file) 127	1
2070800	NPC23_KAm_nlo	(tarball) (info file) 127	1
2071000	NPC23_PRm_nlo	(tarball) (info file) 127	1
2071200	NPC23_PIsum_nlo	(tarball) (info file) 127	1
2071400	NPC23_KAsum_nlo	(tarball) (info file) 127	1
2071600	NPC23_PRsum_nlo	(tarball) (info file) 127	1
2071800	NPC23_CHHAp_nlo	(tarball) (info file) 127	1
2072000	NPC23_CHHAm_nlo	(tarball) (info file) 127	1
2072200	NPC23_CHHAsum_nlo	(tarball) (info file) 127	1
3000000	nNNPDF10_nlo_as_0118_N1	(tarball) (into file) 251	1
3000300	nNNPDF10_nlo_as_0118_D2	(tarball) (info file) 251	1
3000600	nNNPDF10_nlo_as_0118_He4	(tarball) (info file) 251	1
3000900	nNNPDF10_nlo_as_0118_Li6	(tarball) (info file) 251	1
3001200	nNNPDF10_nlo_as_0118_Be9	(tarball) (info file) 251	1
3001500	nNNPDF10_nlo_as_0118_C12	(tarball) (info file) 251	1
3001800	nNNPDF10_nlo_as_0118_N14	(tarball) (info file) 251	1
3002100	nNNPDF10_nlo_as_0118_Al27	(tarball) (info file) 251	1

FFs for charged π , k, p are all available in LHAPDF.

Gao, Liu, Shen, HX, Zhao, PRL, 2024

$\langle z \rangle_i^h$	g(z > 0.01)	u(z > 0.01)	d(z > 0.01)	s(z > 0.0
π^+ K^+ p	$\begin{array}{c} 0.200\substack{+0.008\\-0.008}\\ 0.018\substack{+0.004\\-0.003}\\ 0.035\substack{+0.006\\-0.005}\end{array}$	$\begin{array}{c} 0.262\substack{+0.017\\-0.016}\\ 0.058\substack{+0.005\\-0.004}\\ 0.044\substack{+0.004\\-0.004}\end{array}$	$\begin{array}{c} 0.128\substack{+0.020\\-0.019}\\ 0.019\substack{+0.004\\-0.004}\\ 0.022\substack{+0.002\\-0.002}\end{array}$	$\begin{array}{c} 0.161\substack{+0.\\-0.0}\\ 0.015\substack{+0.\\-0.0}\\ 0.015\substack{+0.\\-0.0}\end{array}$
π ⁻ K ⁻ p̄	$\begin{array}{c} 0.200\substack{+0.008\\-0.008}\\ 0.018\substack{+0.004\\-0.003}\\ 0.035\substack{+0.006\\-0.005}\end{array}$	$\begin{array}{c} 0.128\substack{+0.020\\-0.019}\\ 0.019\substack{+0.004\\-0.004}\\ 0.019\substack{+0.003\\-0.003}\end{array}$	$\begin{array}{c} 0.299\substack{+0.054\\-0.049}\\ 0.019\substack{+0.004\\-0.004}\\ 0.019\substack{+0.003\\-0.003}\end{array}$	$\begin{array}{c} 0.161\substack{+0.\\-0.0}\\ 0.205\substack{+0.\\-0.0}\\ 0.015\substack{+0.\\-0.0}\end{array}$
Sum	$0.507\substack{+0.014\\-0.013}$	$0.531\substack{+0.015\\-0.013}$	$0.506\substack{+0.042\\-0.037}$	$0.572\substack{+0.\\-0.0}$

$$\sum_{h} \sum_{S_{h}} \int_{0}^{1} dz \, z \, D_{1}^{h/q}(z) = 1$$

• Hint for violation of momentum sum rule?

The impact from future experiments

The impact of CEPC based on NPC23

	0			e^+e^- annihilation			
$\sqrt{s}({ m GeV})$	luminosity (ab^{-1})		final state	lin om et is ente	hadrong	N	
	CEPC	FCC-ee	ILC	nnal state	killematic cuts	hadrons	N _{pt}
01.0	60	150		qar q	$\cos(\theta) > 0$	$h^{+,-}$	132
91.2	00	150	-	$car{c}/bar{b}$	-	h^{\pm}	65
160	4.9			qar q	$\cos(\theta) > 0$	$h^{+,-}$	168
100	4.2			$car{c}/bar{b}$	- 3	h^{\pm}	83
161		10		qar q	$\cos(\theta) > 0$	$h^{+,-}$	168
101	-	10		$car{c}/bar{b}$	-	h^{\pm}	83
240	19	F		$q \bar{q}$	$\cos(\theta) > 0$	$h^{+,-}$	186
240	15	5	-	$car{c}/bar{b}$	- 1	h^{\pm}	92
250			0	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	186
250	-	-	2	$car{c}/bar{b}$	- 1	h^{\pm}	92
250		0.2	0.2	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300	-	0.2	0.2	$c \bar{c} / b \bar{b}$	- 1	h^{\pm}	98
260	0.65	-	-	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300				$c \bar{c} / b \bar{b}$	-	h^{\pm}	98
0.07		1.5		$q \bar{q}$	$\cos(\theta) > 0$	$h^{+,-}$	198
305	-		-	$c \bar{c} / b \bar{b}$	-	h^{\pm}	98
500 -		-	4	$q \bar{q}$	$\cos(\theta) > 0$	$h^{+,-}$	198
	-			$car{c}/bar{b}$	-	h^{\pm}	98
			Wb	ooson decay channels			
(CoV)	# events (million)		final state	linomatia auta	h a duan a	A.	
$\sqrt{s}(\text{GeV})$	CEPC	FCC-ee	ILC	inai state	kinematic cuts	nadrons	$1_{\rm pt}$
80.410	116	68	62	$W^-W^{+*} \rightarrow W^-q\bar{q}$		h+,-	190
00.419	58	58 34	31	$W^-W^{+*} \rightarrow W^-c\bar{s}$	-	<i>n</i> ' '	120
			Higgs	boson decay channe	ls		
$\sqrt{s} ({ m GeV})$	# events (million)		on)	final state	linematic auto	hadrena	N
	CEPC	FCC-ee	ILC	iniai state	kinematic cuts		1v _{pt}
125	0.23	0.09	0.07	gg			
	0.08	0.03	0.02	$c\bar{c}$	-	h^{\pm}	77
	1.53	0.59	0.47	$bar{b}$			

Ratio

Ratio

The impact from future experiments

The impact of CEPC based on HKNS Zhou, Gao, 2407.10059

				e^+e^- annihilation			
La (CaV)	luminosity (ab^{-1})			Gradienter	1	h	N
$\sqrt{s}(\text{GeV})$	CEPC	FCC-ee	ILC	final state	kinematic cuts	hadrons	$N_{\rm pt}$
01.0	60	150	0.00	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	132
91.2	00	150		$c\bar{c}/b\bar{b}$	-	h^{\pm}	65
160	4.9			q ar q	$\cos(\theta) > 0$	$h^{+,-}$	168
100	4.2			$c \bar{c} / b \bar{b}$	- 3	h^{\pm}	83
161		10		qar q	$\cos(\theta) > 0$	$h^{+,-}$	168
101	-	10	~ ~	$car{c}/bar{b}$	-	h^{\pm}	83
240	12	Б		qar q	$\cos(\theta) > 0$	$h^{+,-}$	186
240	15	5	-	$car{c}/bar{b}$	- 1	h^{\pm}	92
250			9	qar q	$\cos(\theta) > 0$	$h^{+,-}$	186
200	-	-	2	$car{c}/bar{b}$	-	h^{\pm}	92
350		0.2	0.2	qar q	$\cos(\theta) > 0$	$h^{+,-}$	198
350	_	0.2	0.2	$car{c}/bar{b}$	- 1	h^{\pm}	98
260	0.65	-	-	qar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300	0.05			$car{c}/bar{b}$	-	h^{\pm}	98
365		15		qar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300	-	1.0	-	$car{c}/bar{b}$	-	h^{\pm}	98
500	1-		4	qar q	$\cos(\theta) > 0$	$h^{+,-}$	198
500		5.		$car{c}/bar{b}$	-	h^{\pm}	98
			Wł	ooson decay channels			
Ve (GeV)	# events (million)		final state	kinematic cuts	hadrong	M	
V3(Gev)	CEPC	FCC-ee	ILC	ina state	Killematic cuts	naurons	1 vpt
80 / 10	116	68	62	$W^-W^{+*} \rightarrow W^-q\bar{q}$		h+,-	120
00.419	58	34	31	$W^-W^{+*} \rightarrow W^-c\bar{s}$	-	16	120
Higgs boson decay channels							
$\sqrt{s} (\text{GeV})$	# events (million)		final state	kinematic outo	hadrong	N	
	CEPC	FCC-ee	ILC	intai State	Kinematic cuts	naurons	1 pt
125	0.23	0.09	0.07	<i>gg</i>		h^{\pm}	77
	0.08	0.03	0.02	$car{c}$	- 1		
	1.53	0.59	0.47	$bar{b}$			

xD(x)

Ratio 1.5

0.6 (X) 0.4 X 0.2

0.0

Batio 1 1

0.5

0.3

(X) 0.2 X 0.1

0.0 Ratio 1.5 0.5

The impact from future experiments

The impact of CEPC from each channel Zhou, Gao, 2407.10059

	0			e^+e^- annihilation			
(CoV)	luminosity (ab^{-1})			Gradistate	lin anatic auto	hadrona	N
VS(GeV)	CEPC	FCC-ee	ILC	inai state	kinematic cuts	hadrons	$N_{\rm pt}$
01.0	60	150	3	qar q	$\cos(\theta) > 0$	$h^{+,-}$	132
91.2	00	150		$car{c}/bar{b}$	-	h^{\pm}	65
160	4.9			qar q	$\cos(\theta) > 0$	$h^{+,-}$	168
100	4.2		~ 7	$c \bar{c} / b \bar{b}$	- %	h^{\pm}	83
161		10		qar q	$\cos(\theta) > 0$	$h^{+,-}$	168
101	-	10		$car{c}/bar{b}$	-	h^{\pm}	83
240	19	F		$q \bar{q}$	$\cos(\theta) > 0$	$h^{+,-}$	186
240	15	5	-	$car{c}/bar{b}$	-	h^{\pm}	92
250			0	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	186
250	-	-	2	$car{c}/bar{b}$	- 1	h^{\pm}	92
250		0.9	0.0	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300	-	0.2	0.2	$c \bar{c} / b \bar{b}$	-	h^{\pm}	98
260	0.65	-	-	q ar q	$\cos(\theta) > 0$	$h^{+,-}$	198
300				$c\bar{c}/b\bar{b}$	-	h^{\pm}	98
265	892	15		q ar q	$\cos(\theta) > 0$	$h^{+,-}$	198
305	-	1.5	-	$c \bar{c} / b \bar{b}$	-	h^{\pm}	98
500	1÷	-	4	$q \bar{q}$	$\cos(\theta) > 0$	$h^{+,-}$	198
500				$car{c}/bar{b}$	-	h^{\pm}	98
			Wł	oson decay channels			
(CoV)	# events (million)		final state	linomatic auta	hadrona	AT.	
$\sqrt{s}(\text{GeV})$	CEPC	FCC-ee	ILC	inal state kinematic cuts		nadrons	1 v pt
80.410	116	68	62	$W^-W^{+*} \rightarrow W^-q\bar{q}$		L+	190
00.419	58	34	31	$W^-W^{+*} \rightarrow W^-c\bar{s}$	-	n''	120
			Higgs	boson decay channe	ls	9.74 	
$\sqrt{s} ({ m GeV})$	# events (million)		Constants	hin on atic auto	hadrena	N	
	CEPC	FCC-ee	ILC	inai state	kinematic cuts	nadrons	$I_{\rm pt}$
125	0.23	0.09	0.07	gg			
	0.08	0.03	0.02	$c\bar{c}$	_	h^{\pm}	77
	1.53	0.59	0.47	$bar{b}$			

NPC23 - high precision determination of parton fragmentation in vacuum from world data

- NNLO
- High impact of CEPC in constraining Parton FFs

Thanks for your attention!

• Works in progress: NPC24 - FFs for neutral hadrons, higher precision at

