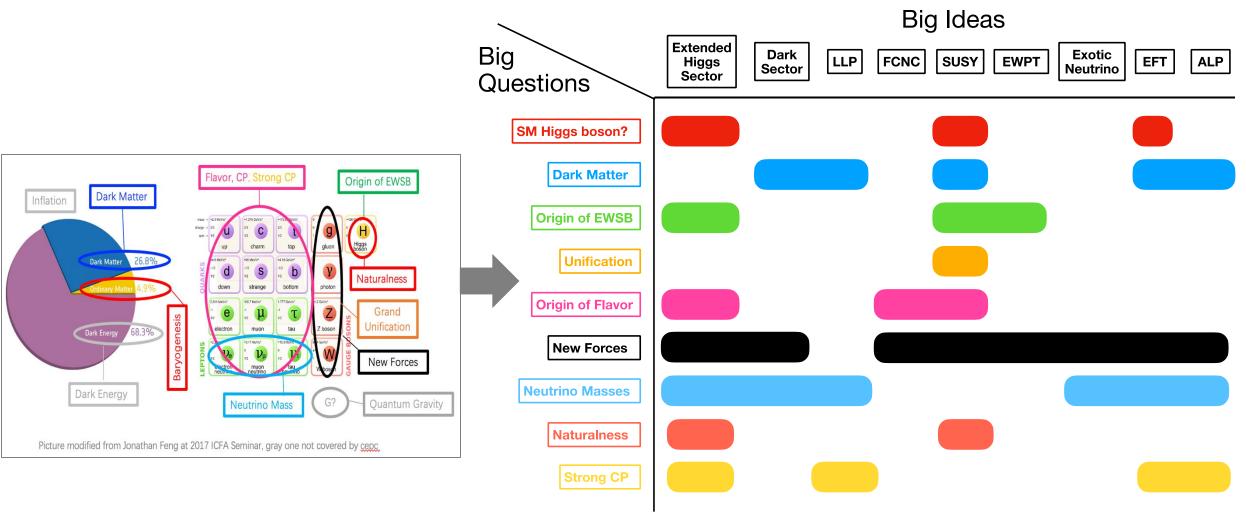


CEPC NP Potential

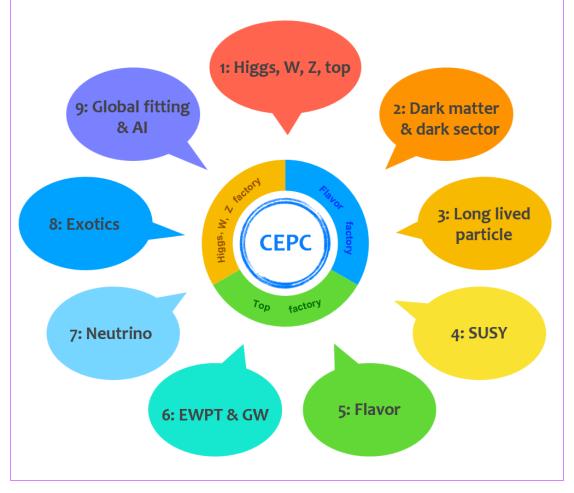
-- White paper statues

Xuai Zhuang (IHEP)


On behalf of CEPC NP team

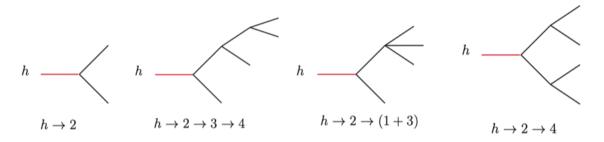
zhuangxa@ihep.ac.cn

CEPC Internation Workshop 2024, Hangzhou, China


Oct. 22-26, 2024

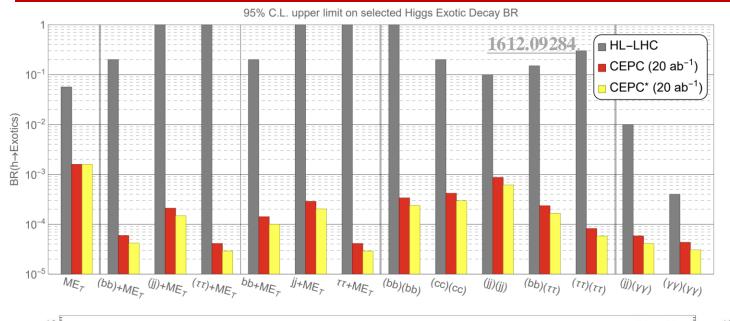
Big Questions and Ideas in particle physics

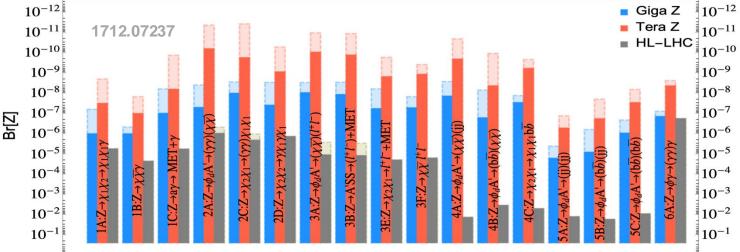
FCC $[10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ **CEPC (30 MW) CEPC (50 MW) ILC-Baseline (Snowmass 2021) CLIC-Baseline (Snowmass 2021)** Luminosity / IP 10 10³ 10^{2} √s [GeV]


CEPC operation scheme and NP Program

Operation mode	Z factory	WW threshold	Higgs factory	$tar{t}$
$\sqrt{s}~({\rm GeV})$	91.2	160	240	360
Run time (year)	2	1	10	5
Instantaneous luminosity $(10^{34}cm^{-2}s^{-1}, \text{ per IP})$	191.7	26.6	8.3	0.83
Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$	100	6	20	1
Event yields	3×10^{12}	1×10^8	4×10^6	5×10^5

1. Exotic Higgs/Z/top decays

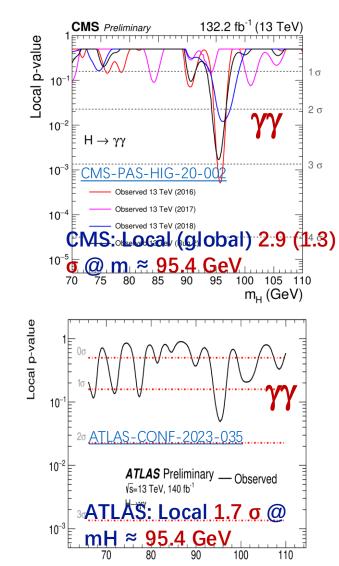

■ *Higgs exotic decay* motivated by a large class of BSM physics, such as singlet extensions, two Higgs-doublet-models (2HDM), SUSY models, Higgs portals, gauge extensions of the SM ...


Representative topologies of the Higgs exotic decays

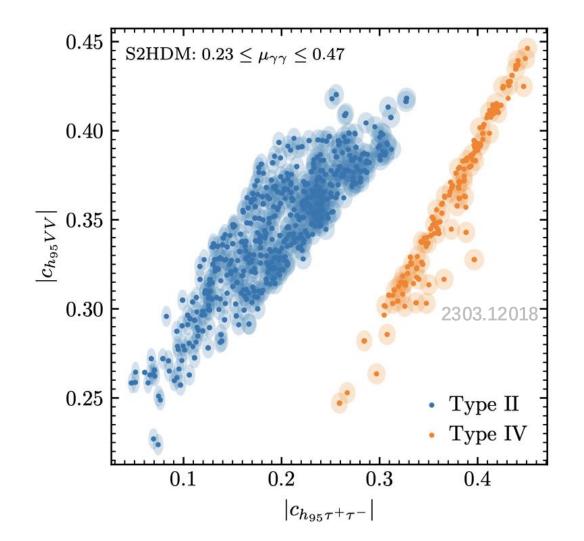
- Exotic Z or top decays are also motivated by many BSM models (ED, Heavy Vector Triplet, ...) and can also be searched at CEPC
- Light Higgs are motivated by 2HDM and Axion-like particle models, which can be searched at CEPC well if they exist.

Exotic Higgs/Z/top decays

The 95% C.L. upper limit on selected Higgs exotic decay BR



The reach for the branching ratio of various exotic Z decay modes


→ Good sensitivity of exotic Higgs/Z decay from CEPC

Light Higgs

■ Light Higgs are motivated by 2HDM and Axion-like particle models

m_н [GeV]

S2HDM parameter points passing the applied constraints for the diphoton signal strengths.

Light higgs can be searched at CEPC very well if exists.

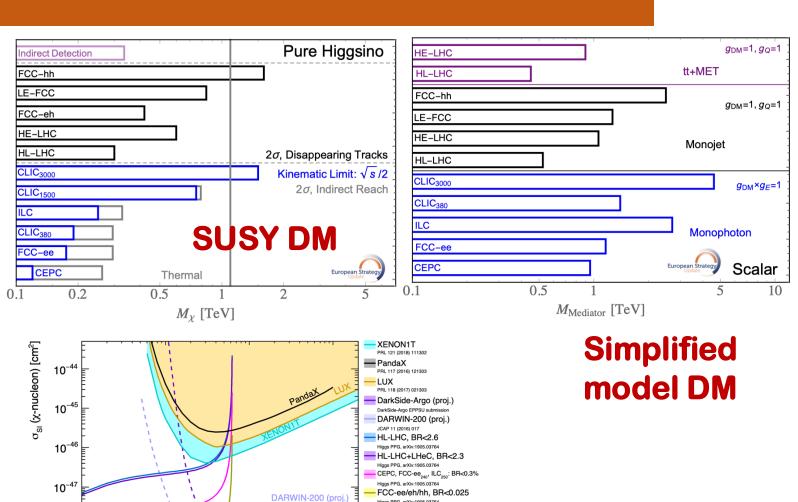
 10^{-4}

Higgs Portal model

Direct searches, Majorana DM

10

Collider limits at 95% CL, direct detection limits at 90% CL


10²

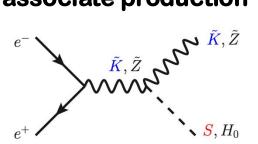
■ UV models DM:

- SUSY DM
- Double dark portal model
- •

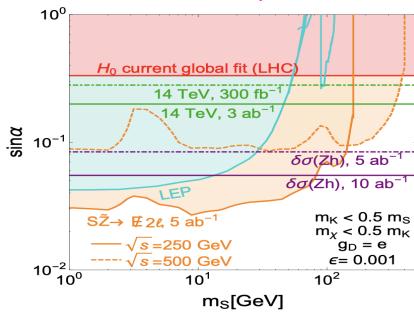
■ Simplified models DM:

- Scalar portal
- Fermion portal
- Vector portal
- EFT DM

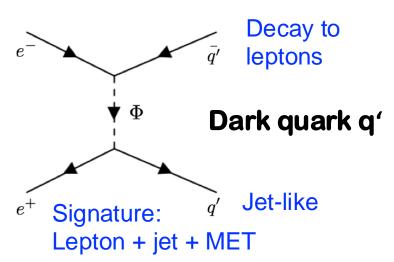
Higgs-portal DM

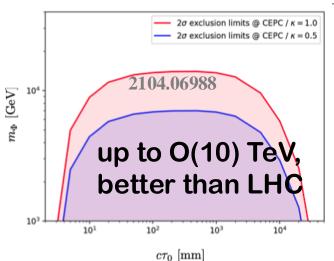

10³

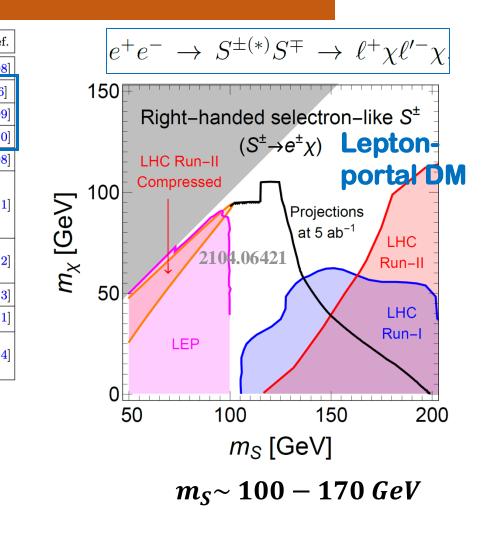
m, [GeV]


European Strateg

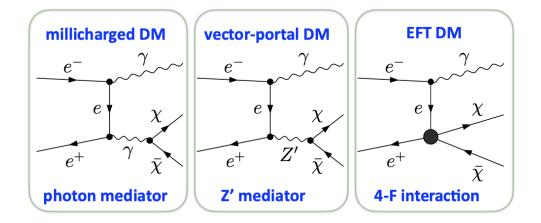
Portal	Effective operator	$\sqrt{s} \; [\mathrm{GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 o ext{scalar mixing } \sin \theta$	250	5	invisible S, $\sin \theta \approx 0.03 \ (0.20 \ \text{global-fits})$	22	[108]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100\mathrm{GeV} < m_S < 170\mathrm{GeV}$	23	[56]
Fermion	$\kappa\Phi\overline{q_L'}\ell_R + ext{H.c.} ext{ (dark QCD)}$	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c\tau_{\mathrm{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	25	[109]
	$y\Phiar{F}_L\ell_R + ext{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	26	[110]
	$A'_{\mu}\left(e\epsilon J_{ m em}^{\mu}+g_Dar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D=e$ and $m_{A'}<125~{\rm GeV}~(\epsilon \sim 0.02~)$	27, 28	[108]
		250	5	$\epsilon \sim 0.1 \ { m for} \ m_\chi \sim 50 \ { m GeV}$		
Vester	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \ { m for} \ m_\chi \sim 5 \ { m GeV}$	29	[111]
Vector		160	16	$\epsilon \sim 0.5 \ { m for} \ m_\chi \sim 10 \ { m GeV}$		
	$\frac{1}{2}\mu_{\chi}ar{\chi}\sigma^{\mu u}\chi F_{\mu u} + \frac{i}{2}d_{\chi}ar{\chi}\sigma^{\mu u}\gamma^5\chi F_{\mu u}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_{B} \ \text{for} \ m_{\chi} < 25 \text{GeV}$	30	[110]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu}+b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \mathrm{GeV^{-2}} \ \mathrm{for} \ \mathrm{m}_{\chi} < 80 \mathrm{GeV}$	30	[112]
	$rac{1}{\Lambda^2} \sum_i \left(ar{\chi} \gamma_\mu (1 - \gamma_5) \chi ight) \left(ar{\ell} \gamma^\mu (1 - \gamma_5) \ell ight)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[113]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 \; { m TeV} \; ({ m Null})$	32	[111]
	$\sum_{i} \frac{1}{\Lambda_{i}^{2}} (\bar{e}\Gamma_{\mu}e) (\bar{\nu}_{L}\Gamma^{\mu}\chi_{L}) + \text{H.c.}$ $\Gamma_{\mu} = 1, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu}\gamma_{5}, \sigma_{\mu\nu}$	240	20	$\Lambda_i \sim 1 \; { m TeV} \; (m_\chi = 0) \; ({ m Null})$	33	[114]

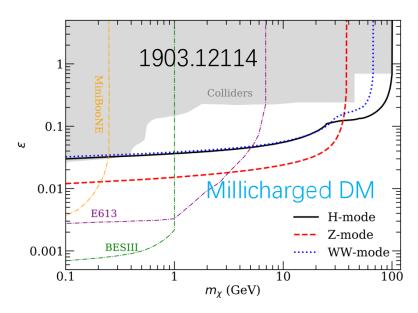

Dark Sector from Z/H associate production




Double dark portal model: Scale and Vector-portal DM

Portal	Effective operator	$\sqrt{s} \; [\mathrm{GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 o \text{scalar mixing } \sin \theta$	250	5	invisible S, $\sin \theta \approx 0.03 \; (0.20 \; \text{global-fits})$		[108]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100 \mathrm{GeV} < m_S < 170 \mathrm{GeV}$	23	[56]
Fermion	$\kappa\Phi\overline{q'_L}\ell_R + ext{H.c. (dark QCD)}$	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c\tau_{\mathrm{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	25	[109]
	$y\Phiar{F}_L\ell_R + ext{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	26	[110]
	$A_{\mu}^{\prime}\left(e\epsilon J_{\mathrm{em}}^{\mu}+g_{D}ar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D=e$ and $m_{A'}<125~{\rm GeV}~(\epsilon \sim 0.02~)$	27, 28	[108]
		250	5	$\epsilon \sim 0.1 \ { m for} \ m_\chi \sim 50 \ { m GeV}$		
Vector	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \ { m for} \ m_\chi \sim 5 \ { m GeV}$	29	[111]
vector		160	16	$\epsilon \sim 0.5 \ { m for} \ m_\chi \sim 10 \ { m GeV}$		
	$\frac{1}{2}\mu_{\chi}ar{\chi}\sigma^{\mu u}\chi F_{\mu u} + \frac{i}{2}d_{\chi}ar{\chi}\sigma^{\mu u}\gamma^5\chi F_{\mu u}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_{B} \ \text{for} \ m_{\chi} < 25 \text{GeV}$	- 30	[110]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu} + b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \mathrm{GeV^{-2}} \ \mathrm{for} \ \mathrm{m}_{\chi} < 80 \mathrm{GeV}$	30	[112]
	$\frac{1}{\Lambda^2} \sum_i \left(\bar{\chi} \gamma_\mu (1 - \gamma_5) \chi \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \ell \right)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[113]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 \; { m TeV} \; ({ m Null})$	32	[111]
	$\sum_{i} \frac{1}{\Lambda_{i}^{2}} \left(\bar{e} \Gamma_{\mu} e \right) \left(\bar{\nu}_{L} \Gamma^{\mu} \chi_{L} \right) + \text{H.c.}$	240	20	$\Lambda_i \sim 1 \; { m TeV} \; (m_\chi = 0) \; ({ m Null})$	33	[114]
	$\Gamma_{\mu}=1,\gamma_{5},\gamma_{\mu},\gamma_{\mu}\gamma_{5},\sigma_{\mu u}$				I	



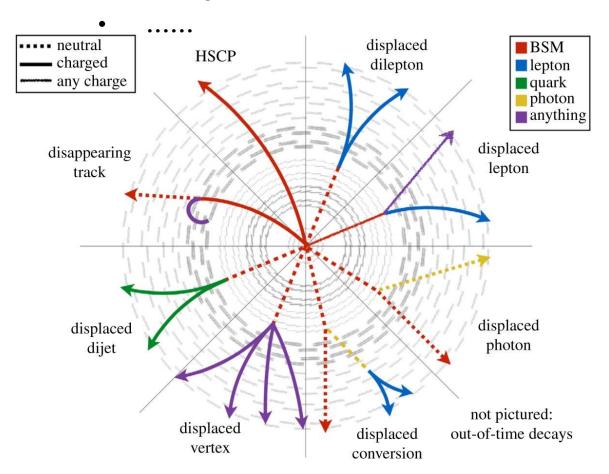


Portal	Effective operator	$\sqrt{s} \; [\mathrm{GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 o ext{scalar mixing } \sin heta$	250	5	invisible S, $\sin \theta \approx 0.03 \ (0.20 \text{ global-fits})$	22	[108]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100\mathrm{GeV} < m_S < 170\mathrm{GeV}$	23	[56]
Fermion	$\kappa\Phi\overline{q'_L}\ell_R + ext{H.c.} ext{ (dark QCD)}$	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c\tau_{\mathrm{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	25	[109]
	$y\Phiar{F}_L\ell_R + ext{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	26	[110]
	$A_{\mu}^{\prime}\left(e\epsilon J_{\mathrm{em}}^{\mu}+g_{D}ar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D=e$ and $m_{A'}<125~{\rm GeV}~(\epsilon \sim 0.02~)$	27, 28	[108]
		250	5	$\epsilon \sim 0.1 \text{ for } m_\chi \sim 50 \text{ GeV}$		
Vector	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \ { m for} \ m_\chi \sim 5 \ { m GeV}$	29	[111]
vector		160	16	$\epsilon \sim 0.5 \ { m for} \ m_\chi \sim 10 \ { m GeV}$		
	$rac{1}{2}\mu_{\chi}ar{\chi}\sigma^{\mu u}\chi F_{\mu u} + rac{i}{2}d_{\chi}ar{\chi}\sigma^{\mu u}\gamma^5\chi F_{\mu u}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_{B} \ \text{for} \ m_{\chi} < 25 \text{GeV}$	30	[112]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu} + b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \text{GeV}^{-2} \text{ for } m_{\chi} < 80 \text{GeV}$	30	[112]
	$\frac{1}{\Lambda^2} \sum_i (\bar{\chi} \gamma_\mu (1 - \gamma_5) \chi) (\bar{\ell} \gamma^\mu (1 - \gamma_5) \ell)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[113]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 { m TeV} ({ m Null})$	32	[111]
	$\sum_{i} \frac{1}{\Lambda_{i}^{2}} \left(\bar{e} \Gamma_{\mu} e \right) \left(\bar{\nu}_{L} \Gamma^{\mu} \chi_{L} \right) + \text{H.c.}$	240	20	$\Lambda_i \sim 1 \; { m TeV} \; (m_\chi = 0) \; ({ m Null})$	33	[114]
	$\Gamma_{\mu}=1,\gamma_{5},\gamma_{\mu},\gamma_{\mu}\gamma_{5},\sigma_{\mu u}$			ν ν ν ν		

new physics process: $e^+e^- \rightarrow \bar{\chi}\chi\gamma$

Vectorportal DM

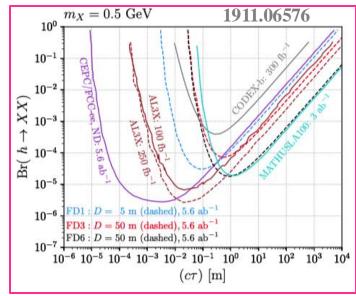
→ CEPC can probe lowmass light dark states.

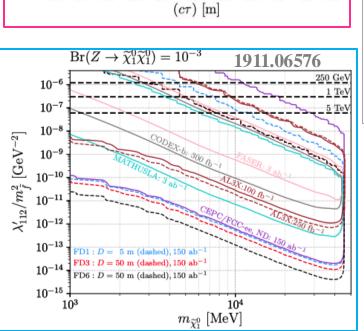


CEPC can improve the sensitivities by roughly one order of magnitude (vs LHC), for some cases.

3. Long-lived particles (LLP)

Long lifetimes result from a few simple physical mechanisms:


- Small couplings (ex. RPV SUSY)
- Limited phase space: small mass splitting (ex. compressed SUSY, ...)
- Heavy intermediate states

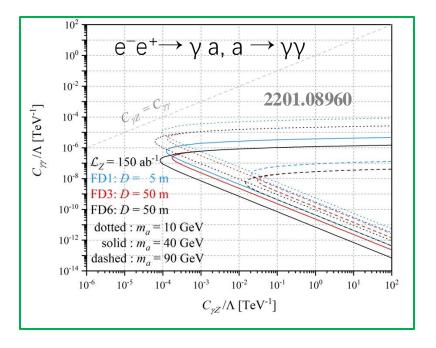


- New scale particles from higgs decay
- SUSY RPV N1 from Z-boson decays
- ALP
- Dark photons
- •
- → Far Detector can help a lot!

3. Long-lived particles (LLP)

LLP	Signal Signature	\sqrt{s}	L	Detector	Sensitivities on parameters	Ei ma	Refs.								
Type	Signal Signature	[GeV]	$[ab^{-1}]$	Detector	[Assumptions]	rıgs.	Reis.								
	$Z(\to {\rm incl.}) h(\to XX),$ $X \to q\bar{q}/\nu\bar{\nu}$	240	20	ND	${ m Br}(h o XX) \sim 10^{-6}$ $[m \in (1,50) \ { m GeV}, \ au \in (10^{-3},10^{-1}) \ { m ns}]$	37	[80]								
New scalar				ND	${ m Br}(h o XX)\sim 3 imes 10^{-6}$ $[m=0.5~{ m GeV},c au\sim 5 imes 10^{-3}~{ m m}]$	49	[86]								
particles (X)	$Z(\to \text{incl.}) h(\to XX),$ $X \to \text{incl.}$	240	5.6	FD3	${ m Br}(h o XX)\sim 7 imes 10^{-5}$ $[m=0.5~{ m GeV},c au\sim 1~{ m m}]$	49	[86]								
				LAYCAST	${\rm Br}(h\to XX)\sim 5\times 10^{-6}$ $[m=0.5~{\rm GeV},~c\tau\sim 10^{-1}~{\rm m}]$	49	[241]								
RPV-SUSY				ND	$\lambda'_{112}/m_{\tilde{f}}^2 \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2}$ $[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	43	[86]								
neutralinos	$Z o ilde{\chi}^0_1 ilde{\chi}^0_1, \ ilde{\chi}^0_1 o ext{incl.}$	91.2	150	150	2 150	1.2 150	2 150	150	150	150	150	FD3	$\lambda'_{112}/m_{\tilde{f}}^2 \in (10^{-14}, \ 10^{-9}) \ \mathrm{GeV^{-2}}$ $[m \sim 40 \ \mathrm{GeV}, \ \mathrm{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	50	[86]
$(ilde{\chi}^0_1)$				LAYCAST	$\lambda'_{112}/m_{\tilde{f}}^2 \in (7 \times 10^{-15}, \ 10^{-9}) \ \mathrm{GeV^{-2}}$ $[m \sim 40 \ \mathrm{GeV}, \ \mathrm{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	50	[241]								
	$Z^{(*)} \rightarrow \mu^- \mu^+ a$	91	150	ND	$f_a/C_{\mu\mu}^A\lesssim 950~{ m GeV}$	44	[85]								
				ND	$C_{\gamma\gamma}/\Lambda \sim 10^{-3} \; { m TeV^{-1}}$ $[C_{\gamma Z}=0, m\sim 2 \; { m GeV}]$	51	[241]								
ALPs (a)	$\gamma a,$ $a o \gamma \gamma$	91.2	150	FD3	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3} \ { m TeV^{-1}}$ $[C_{\gamma Z}=0, \ m \sim 0.3 \ { m GeV}]$	51	[242]								
				LAYCAST	$C_{\gamma\gamma}/\Lambda \sim 2 imes 10^{-3} \ { m TeV^{-1}}$ $[C_{\gamma Z}=0, m \sim 0.7 \ { m GeV}]$	51	[241]								
Hidden valley particles (π_V^0)	$Z h(o \pi_V^0 \pi_V^0),$ $\pi_V^0 o b ar b$	350	1.0	ND	$\sigma(h) \times \mathrm{BR}(h \to \pi_v^0 \pi_v^0) \sim 10^{-4} \mathrm{~pb}$ $[m \in (25, 50) \mathrm{~GeV}, \ \tau \sim 10^2 \mathrm{~ps}]$	41	[243]								
Dark photons (γ_D)	$Z(\to q\bar{q}) h(\to \gamma_D \gamma_D),$ $\gamma_D \to \ell^- \ell^+ / q\bar{q}$	250	2.0	ND	${\rm Br}(h \to \gamma_D \gamma_D) \sim 10^{-5},$ $[m \in (5, 10) \ {\rm GeV}, \ \tau \sim 10^2 \ {\rm ps}, \ \epsilon \in (10^{-6}, 10^{-7})]$	42	[83]								

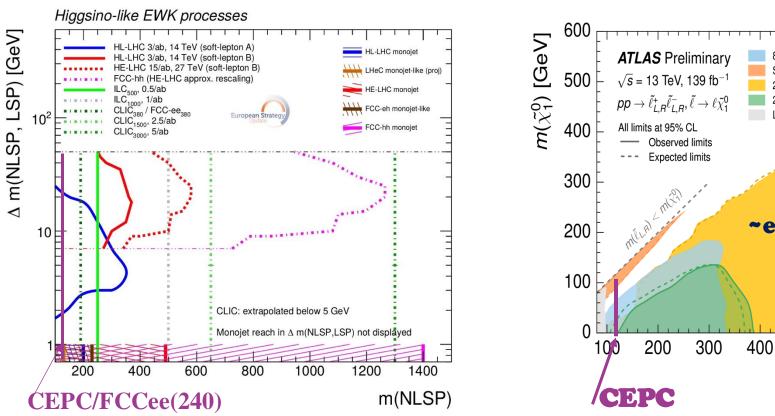
Light Scalars from Exotic Higgs Decays

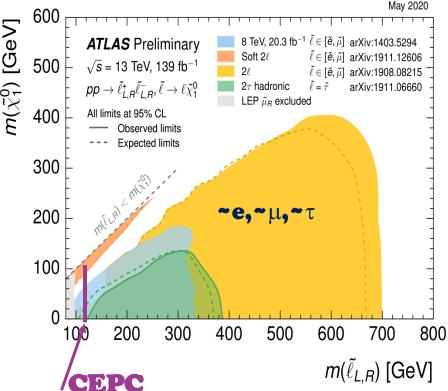

FD can extend and complement the sensitivity to the LLPs compared with Near Detector

SUSY RPV Neutralino1 from Z Decays

3. Long-lived particles (LLP)

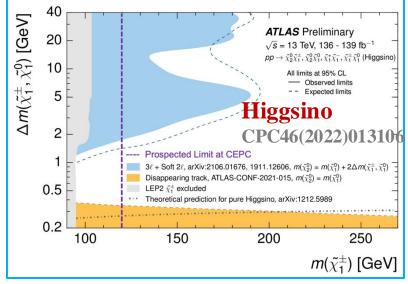
						_	
$_{ m LLP}$	Signal Signature	\sqrt{s}	\mathcal{L}	Detector	Sensitivities on parameters	Figs	Refs.
${\bf Type}$	Signal Signature	[GeV]	$[ab^{-1}]$	Detector	[Assumptions]	rīgs.	iteis.
	$Z(\to { m incl.}) \ h(\to XX),$	240	20	ND	${ m Br}(h o XX)\sim 10^{-6}$	97	[00]
	X o q ar q / u ar u	240	20	ND	$[m \in (1, 50) \text{ GeV}, \tau \in (10^{-3}, 10^{-1}) \text{ ns}]$	37	[80]
				MD	${ m Br}(h o XX)\sim 3 imes 10^{-6}$	40	[0.0]
New scalar				ND	$[m=0.5~{\rm GeV},c\tau\sim5\times10^{-3}~{\rm m}]$	49	[86]
particles (X)	$Z(\to {\rm incl.}) \ h(\to XX),$	040		EDa	${ m Br}(h o XX)\sim 7 imes 10^{-5}$	40	[0.0]
	$X \to \mathrm{incl.}$	240	5.6	FD3	$[m=0.5~{ m GeV},c au\sim 1~{ m m}]$	49	[86]
				T ANGAGE	${ m Br}(h o XX)\sim 5 imes 10^{-6}$	40	[0.41]
				LAYCAST	$[m=0.5~{\rm GeV},c\tau\sim10^{-1}~{\rm m}]$	49	[241]
				MD	$\lambda'_{112}/m_{\tilde{f}}^2 \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2}$	40	[0.0]
DDM GHGM				ND	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	43	[86]
RPV-SUSY	$Z o ilde{\chi}^0_1 ilde{\chi}^0_1,$	01.0	150	TDe	$\lambda'_{112}/m_{\tilde{f}}^2 \in (10^{-14}, \ 10^{-9}) \ {\rm GeV^{-2}}$		[0.0]
neutralinos	$\tilde{\chi}_1^0 \to { m incl.}$	91.2	150	FD3	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	50	[86]
$(ilde{\chi}^0_1)$				LAYCAST	$\lambda'_{112}/m_{\tilde{f}}^2 \in (7 \times 10^{-15}, \ 10^{-9}) \ \mathrm{GeV^{-2}}$		[0.41]
				LAYCASI	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	50	[241]
	$Z^{(*)} \rightarrow \mu^- \mu^+ a$	91	150	ND	$f_a/C_{\mu\mu}^A\lesssim 950{ m GeV}$	44	[85]
				ND	$C_{\gamma\gamma}/\Lambda \sim 10^{-3}~{ m TeV^{-1}}$	F1	[0.41]
				ND	$[C_{\gamma Z}=0,m\sim 2{ m GeV}]$	51	[241]
ALPs (a)	$\gamma a,$	91.2	150	FD3	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3}~{ m TeV^{-1}}$	F1	[0.40]
	$a o \gamma \gamma$	91.2	150	г Б	$[C_{\gamma Z}=0,m\sim 0.3\;{ m GeV}]$	51	[242]
				LAVCAST	$C_{\gamma\gamma}/\Lambda \sim 2 imes 10^{-3}~{ m TeV^{-1}}$	51	[941]
					$[C_{\gamma Z}=0,m\sim 0.7~{\rm GeV}]$. ,
Hidden valley	$Zh(o\pi_V^0\pi_V^0),$	350	1.0	ND	$\sigma(h) \times {\rm BR}(h \to \pi_v^0 \pi_v^0) \sim 10^{-4}~{\rm pb}$	41	[243]
particles (π_V^0)	$\pi_V^0 o b ar b$	300	1.0	ND	$[m \in (25, 50) \text{ GeV}, \tau \sim 10^2 \text{ ps}]$	41	[243]
Dark photons	$Z(o qar q)h(o \gamma_D\gamma_D),$	250	2.0	ND	${ m Br}(h o\gamma_D\gamma_D)\sim 10^{-5},$	42	[09]
(γ_D)	$\gamma_D o \ell^- \ell^+/q \bar{q}$	200	2.0	ND	$[m \in (5, 10) \text{ GeV}, \tau \sim 10^2 \text{ ps}, \epsilon \in (10^{-6}, 10^{-7})]$	42	[83]

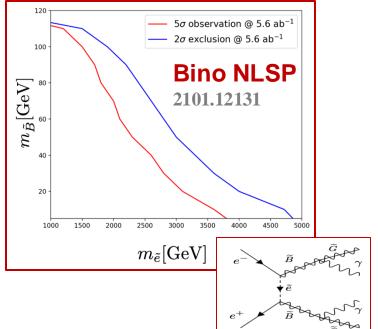

Good sensitivity for ALP

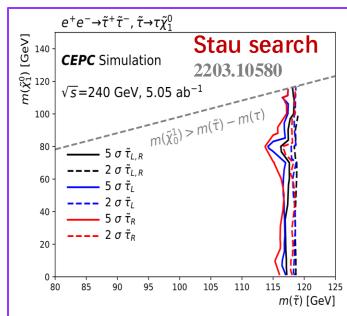


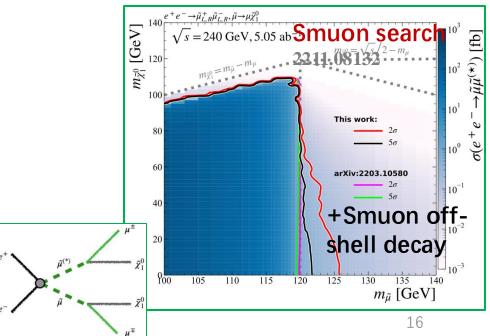
Axion-like Particles

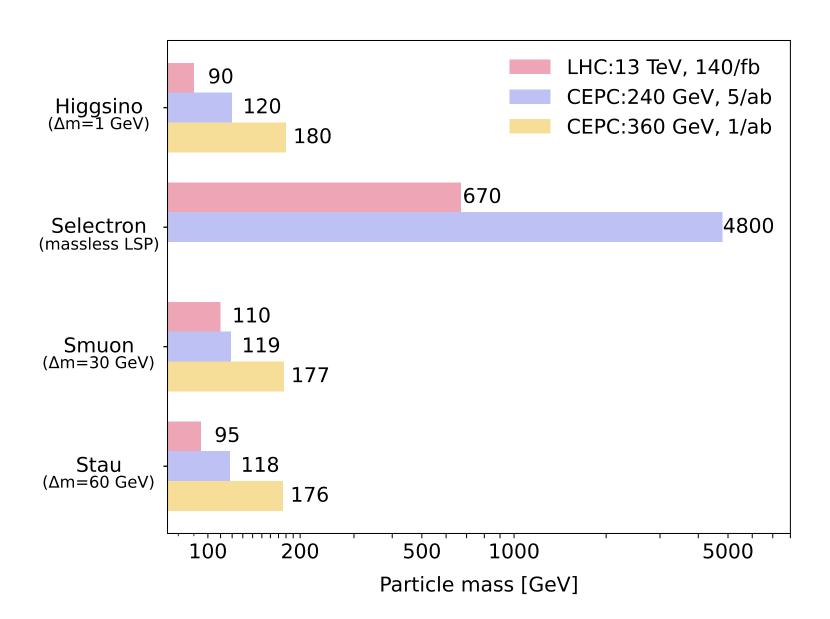
4. SUSY Searches at CEPC

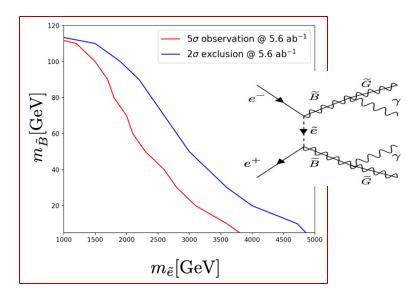

- SUSY: establishes a symmetry between fermions and bosons, solve many big questions: unification, DM, Hierarchy,
- Complementary with LHC: lower mass/soft energy region
 - Mainly light EWKino and slepton for CEPC




4. SUSY Searches at CEPC


Search	Production	\sqrt{s} [GeV]	$\mathcal{L}[ab^{-1}]$	Sensitivity	Figs.	Ref.
Light electroweakino	chargino pair	240	5.05	chargino excluded up to 120 GeV	57	[339]
Light electroweakino	$e^+e^- \to \tilde{B}\tilde{B} \to \gamma\gamma\tilde{G}\tilde{G}$.	240	5.6	selectron excluded up to $4.5~{ m TeV}$	58	[341]
	smuon pair	240	5.05	smuon excluded up $118~{ m GeV}$	59	[342]
Light slepton	stau pair	240	5.05	stau excluded up $117~{ m GeV}$	59	[342]
	smuon pair	360	1	smuon excluded up $178~{ m GeV}$	59	
	stau pair	360	1	stau excluded up $175~{ m GeV}$	59	
	off-shell smuon pair	240	5	smuon excluded up 126 GeV	61	[344]
	$e_R^+ e_R^- \to \tilde{\chi}_1^0(\text{bino}) + \tilde{\chi}_1^0(\text{bino}) + \gamma$	240	3	right-handed selectron excluded up to $210~{ m GeV}$	60	[343]
	$\mathcal{F} ext{-}SU(5)$	-	-	upper limits on $ ilde{ au}_1$ up to 115 GeV	62	[345]
	$\mathcal{F} ext{-}SU(5)$	-	-	upper limits on \tilde{e}_R up to 150 GeV	62	[345]

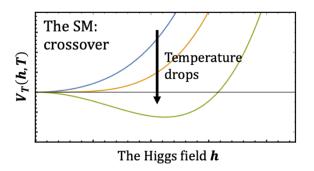


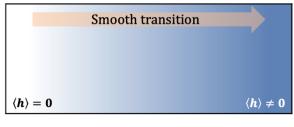


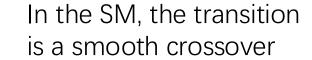
4. SUSY Searches at CEPC

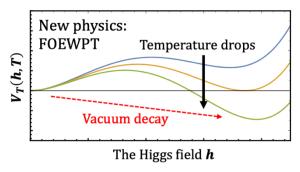
- Light EWKinos/sleptons: discovery in all scenarios up to kinematic limit √s/2
- Heavy selectron from tchannel

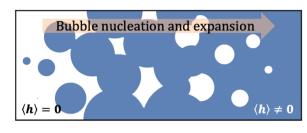
5. Flavor portal NP

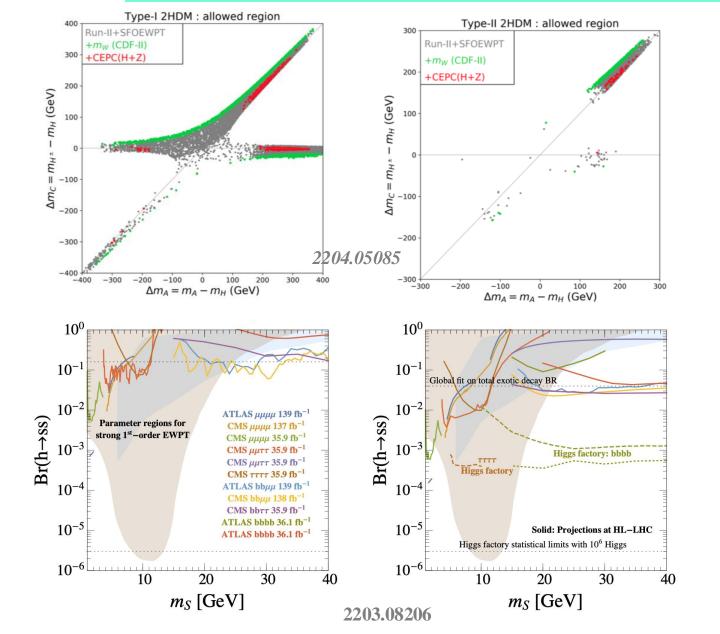

- CEPC is also a flavor factory (b,c,tau) when running at Z pole, which has a unique sensitivity for some rare processes due to suppression in SM
- The sensitivity of the flavor sector to new physics is underscored by several factors:
 - cLFV processes
 - Decays of b and c hadrons
 - Light BSM degrees of freedom from flavor transitions (cLFV or quark FCNC processes) with inv. BSM states or LLP


	Measurement	Current Limit	CEPC [373]	_
	$\mathrm{BR}(Z o au\mu)$	$<6.5\times10^{-6}$	$\mathcal{O}(10^{-9})$	
	${ m BR}(Z o au e)$	$<5.0\times10^{-6}$	$\mathcal{O}(10^{-9})$	
	${ m BR}(Z o \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	
	$BR(au o \mu\mu\mu)$	$< 2.1 \times 10^{-8}$	$\mathcal{O}(10^{-10})$	-
	${ m BR}(au o eee)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$	
	$\mathrm{BR}(au o e\mu\mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$	٥,
	${ m BR}(au o\mu ee)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$ So	Clip
	${ m BR}(au o\mu\gamma)$	$<4.4\times10^{-8}$	$\mathcal{O}(10^{-10})$	JS/X:
	$\mathrm{BR}(au o e\gamma)$	$< 3.3 \times 10^{-8}$	0(1079)	
	${ m BR}(B_s o\phi uar u)$	$< 5.4 \times 10^{-3}$	$\mathcal{O}(10^{-10})$	1/2/
	${\rm BR}(B^0\to K^{*0}\tau^+\tau^-)$	-	$\lesssim \mathcal{O}(10^{-6})$	Y C
	$BR(B_s \to \phi \tau^+ \tau^-)$	-	$\lesssim \mathcal{O}(10^{-6})$	
	$BR(B^+ \to K^+ \tau^+ \tau^-)$	$<2.25\times10^{-3}$	$\lesssim \mathcal{O}(10^{-6})$	
	${\rm BR}(B_s o au^+ au^-)$	$<6.8\times10^{-3}$	$\lesssim \mathcal{O}(10^{-5})$	
	${ m BR}(B^0 o 2\pi^0)$	$\pm 16\%$ (relative)	$\pm 0.25\%$ (relative)	
	$C_{CP}(B^0 o 2\pi^0)$	± 0.22 (relative)	± 0.01 (relative)	
	${ m BR}(B_c o au u)$	$\lesssim 30\%$	\pm 0.5% (relative)	
В	$R(B_c \to J/\psi \tau \nu)/BR(B_c \to J/\psi \mu \nu)$	$\pm \ 0.17 \pm 0.18$	$\pm 2.5\%$ (relative)	
ВІ	$R(B_s \to D_s^{(*)} au u) / BR(B_s \to D_s^{(*)} \mu u)$	-	$\pm 0.2\%$ (relative)	
	$\mathrm{BR}(\Lambda_b \to \Lambda_c au u) / \mathrm{BR}(B_c \to \Lambda_c \mu u)$	$\pm~0.076$	$\pm 0.05\%$ (relative)	
	$\mathrm{BR}(au o\mu X_{\mathrm{inv.}})$	$7 imes 10^{-4}$	$(3-5)\times10^{-6}$	
	${\rm BR}(B o \mu X_{\rm LLP}(o \mu \mu))$	-	$\mathcal{O}(10^{-10})$ (optimal)	


> two orders of magnitude improv. 18


6. EWPT at CEPC

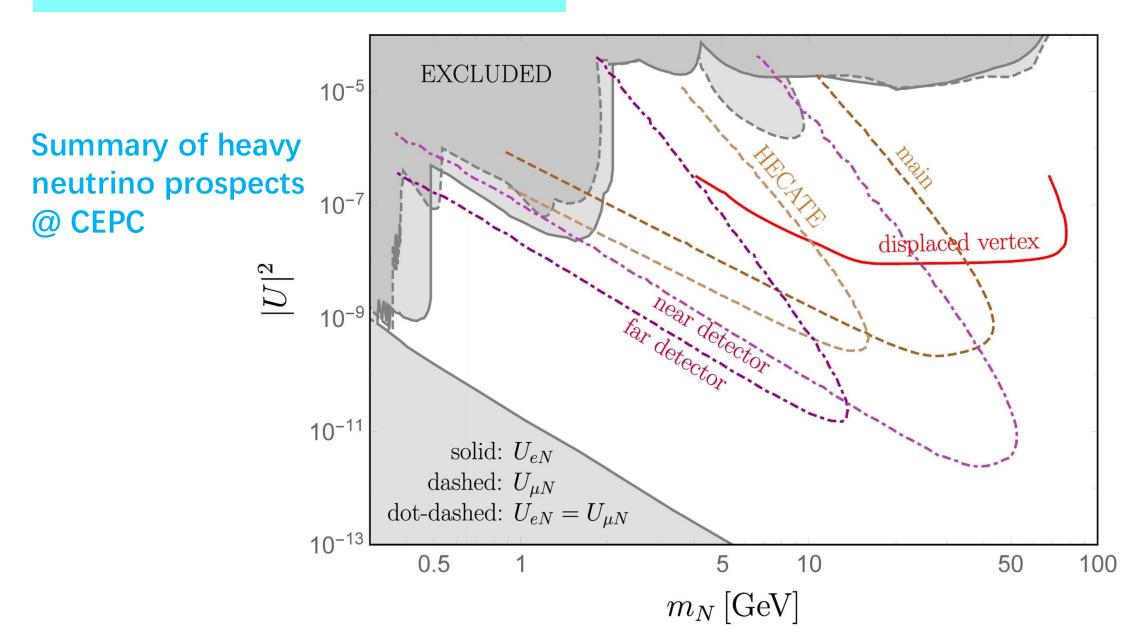

- The nature of Electroweak Phase Transition (EWPT) deeply impacts the thermal history of the Universe, closely linked to puzzles of DM, matterantimatter asymmetry
 - Probing the nature of EWPT at colliders



In NP, the scalar potential exhibits a barrier, allowing for a FOEWPT with bubble nucleation and expansion

- Higgs precision measurements
- Higgs exotic decay

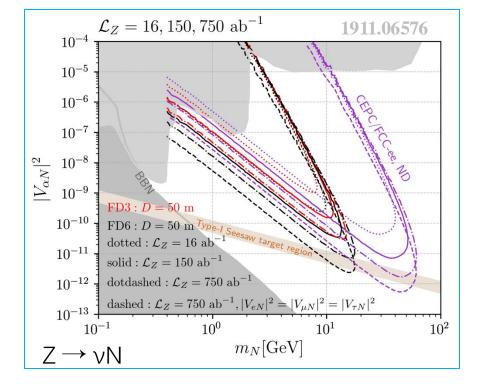
6. EWPT at CEPC

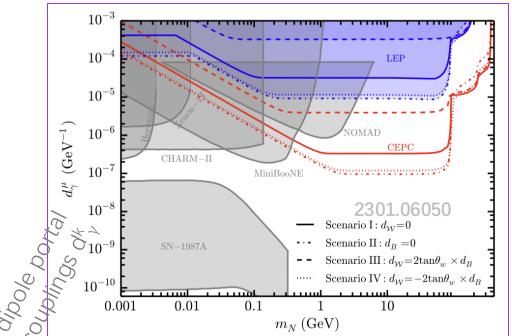


Under current constraints, both Type-I and Type-II 2HDM can explain the SFOEWPT, Z-pole, **Higgs precision** measurements and mW precision measurement of CDF-II at same time.

Higgs exotic decay h→ss→XXYY as a probe for the FOEWPT:

CEPC has the potential to probe almost the entire FOEWPT parameter space for 4b and 4tau channels

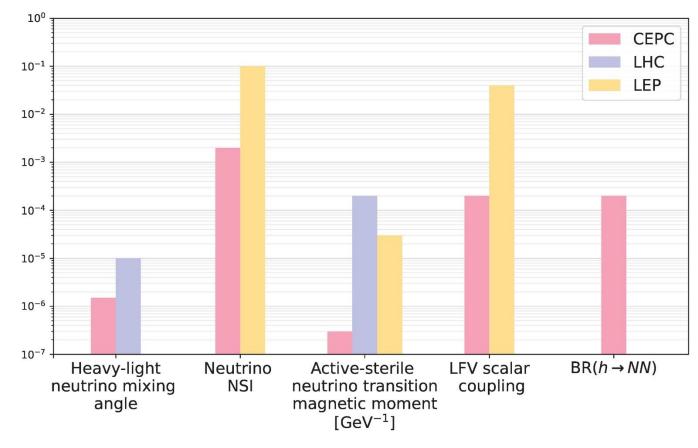

7. Neutrino physics



7. Neutrino physics

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

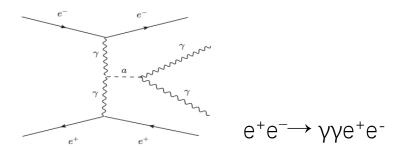
- Heavy neutrino (@ND, FD)
- Non-standard neutrino interactions
- Active-sterile neutrino transition magnetic moments
- Neutral and doubly-charged scalars in seesaw models
- Connection to leptogenesis (collider probes) and dark matter (sterile neutrino in the ∨MSM)

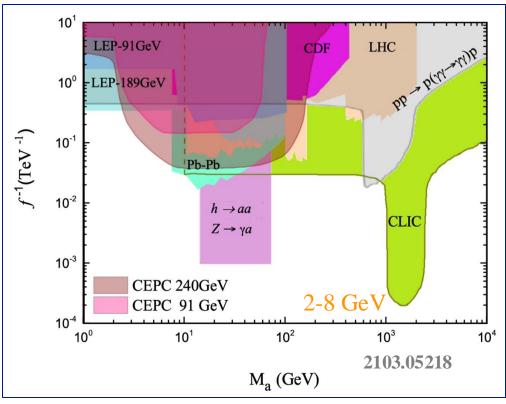


7. Neutrino physics

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

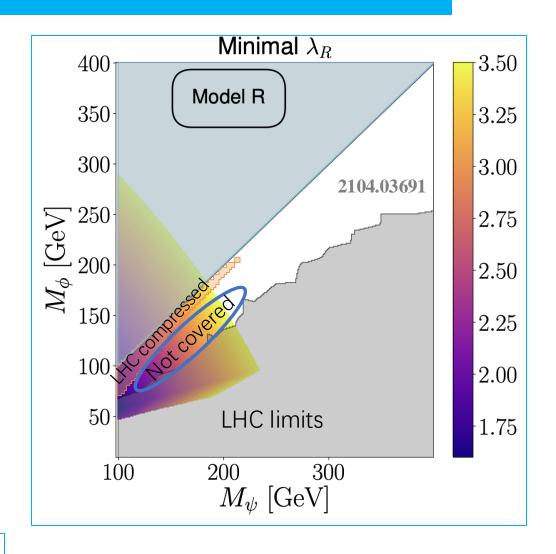
- Heavy neutrino (@ND, FD)
- Non-standard neutrino interactions
- Active-sterile neutrino transition magnetic moments
- Neutral and doubly-charged scalars in seesaw models
- Connection to leptogenesis
 (collider probes) and dark matter
 (sterile neutrino in the ∨MSM)


Summary plot of neutrino relevant models



The sensitivities can be improved by roughly 1 to 2 (or more) orders of magnitude (vs LHC & LEP), for some cases.

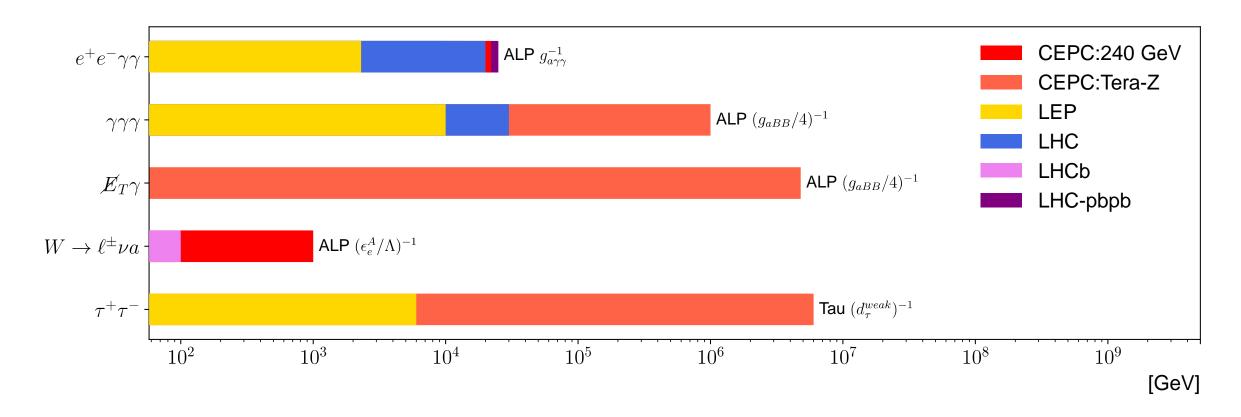
High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...


- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models
- Spin entanglement
- •

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models
- Spin entanglement
- •
- Light EWKinos, smuon, stau coannihilation can explain mu g-2 excess
- Gaps from LHC, can cover by CEPC

A simple model with a new scalar and and a new fermion

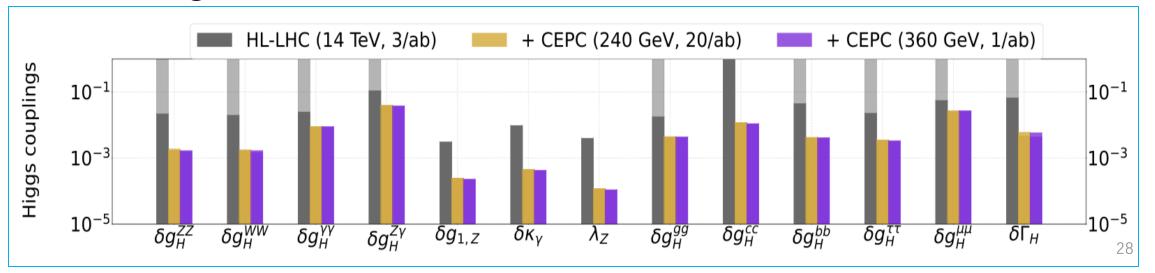

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models
- Spin entanglement

•

Projected energy scale sensitivities via exotic searches at the CEPC

Quantity	Channel	Sensitivity scale (GeV)	CEPC Run
ALP $g_{a\gamma\gamma}^{-1}$	$e^+e^-\gamma\gamma$	6.7×10^3 [637]	$\mathrm{Tera}\text{-}Z$
	$e^+e^-\gamma\gamma$	2.2×10^4 [637]	$240~{ m GeV}$
	$ar{f}fa$	6.5×10^3 [637]	$250~{ m GeV}$
ALP $(g_{aBB}/4)^{-1}$	3γ	10^6 [72]	$\mathrm{Tera}\text{-}Z$
	$\rlap/\!\!\!E_T\gamma$	4.8×10^6 [72]	$\mathrm{Tera}\text{-}Z$
$ ho$ ALP $(\epsilon_e^A/\Lambda)^{-1}$	$W ightarrow \ell^{\pm} u a$	10^3 [639]	$240~{ m GeV}$
Tau $(d_{\tau}^{weak})^{-1}$	$ au^+ au^-$	6×10^6 [667]	$\mathrm{Tera}\text{-}Z$
Bell Inequality	$Z, h o au^+ au^-$	1σ [694]	$240~{ m GeV}$

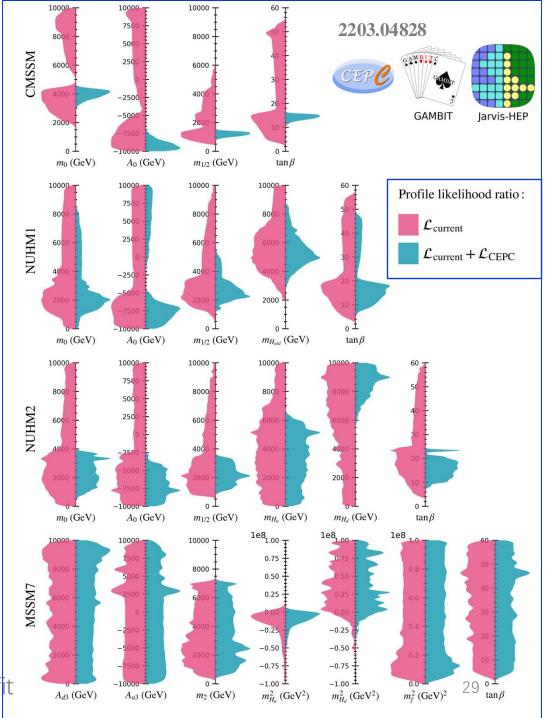

Energy reach in representative exotic search channels at the CEPC. Note the maximal energy reach may apply to different model parameter regions between experiments.

9. Global fits

Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SMEFT
- 2HDM
- SUSY global fits

- Global fit for SMEFT operators at future colliders
- CEPC can improve the Higgs couplings by a factor of a few, or even orders of magnitude $(\delta g_{1,Z}, \delta \kappa_v, \text{ and } \lambda_z.)$

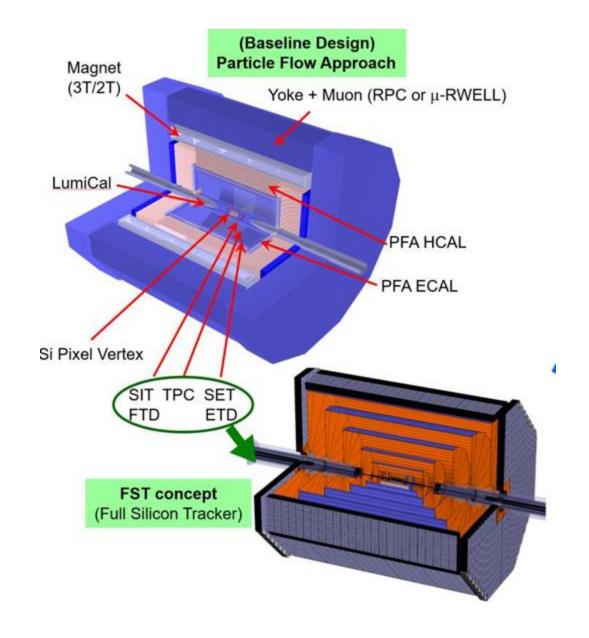

9. Global fits

Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SMEFT
- 2HDM
- SUSY global fits

CEPC has the potential to greatly enhance our understanding of the parameter space and mass spectrum in the MSSM.

One-dimensional profiled likelihood ratio for the global fit



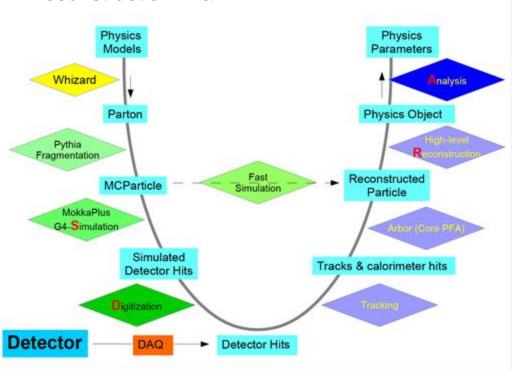
Summary and Outlook

- CEPC has good discovery potential for NP, which is complementary to LHC and has big advantage at low energy/mass scale
- CEPC BSM white paper is preparing and to be ready for review by this year
- Please let us know if you would like to help to polish and review the BSM white paper!

Backup

About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points.


ILD-like detector

Software

Signal samples: MadGraph+Pythia8

Simulation: Mokka

Reconstruction: Marlin

Full simulation reconstruction Chain with Arbor, iterating/validation with hardware studies