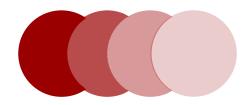


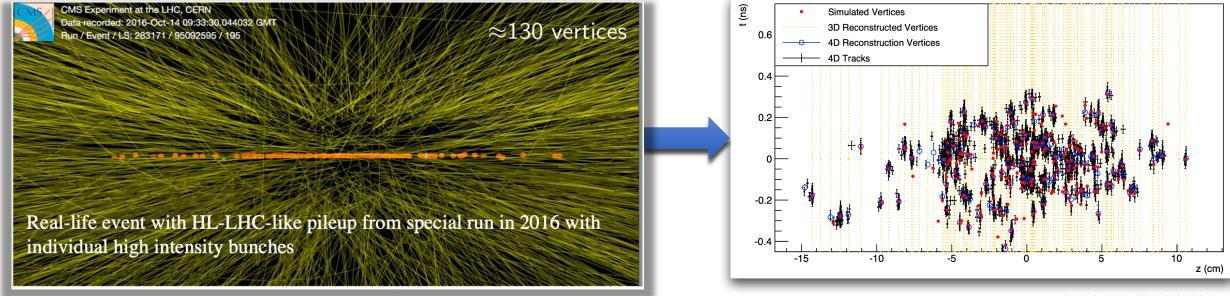
MTD BTL based on LYSO and SiPM at CMS experiment


Xiaohu Sun, Mingtao Zhang, Licheng Zhang, Jin Wang , Leyan Li, Mingxian Zhang, Zhiyuan Li CEPC Workshop, Hangzhou Oct 25th, 2024

Outline

- CMS Phase-II MTD detector for HL-LHC
- BTL : MTD barrel timing layer
- BTL Work and Local Lab Setups at PKU
- Summary

01 CMS Phase-II MTD detector for HL-LHC


Physics motivation of MTD

High luminosity → High pileup

The MTD is a new CMS Phase-II detector for the HL-LHC. It will be added to CMS to help meet the challenge of high luminosity.

- > HL-LHC, 3000 fb⁻¹ at the cost of 140-200 simultaneous collisions (PU)
- ➤ MTD + upgraded tracker = Run2-esque PU mitigation

Physics motivation of MTD

MTD can effectively suppress pileup, improving the overall accuracy of physical measurements.

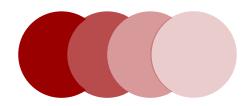
- \triangleright It improves the precision of single Higgs measurements by 20-30%.
- ➤ It increases the acceptance of Di-Higgs signals by 20%.

MTD provides TOF information.

- \triangleright It reduces reducible background by 40% in the search for SUSY particles.
- > It significantly enhances sensitivity to long-lived particles.

Composition and highlights of MTD

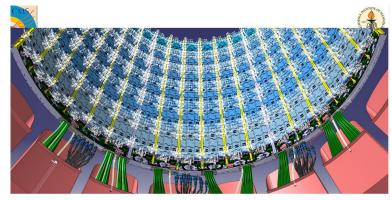
BTL and ETL

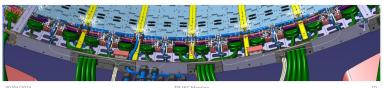

• Choice of sensor technologies for barrel and endcap timing layers driven by technology maturity, radiation hardness, power consumption, and cost and schedule considerations.

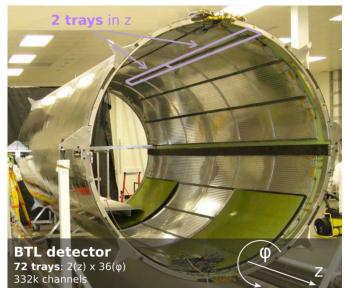
Highlights

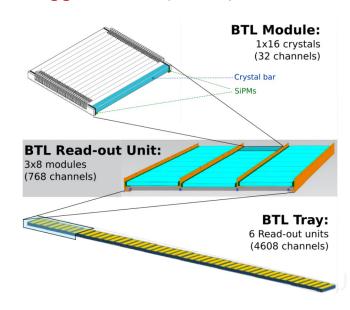
- ✓ The MTD BTL is the first time that CMS barrel has achieved a time resolution of tens of picoseconds
- ✓ CMS will be the only large-scale universal detector on the LHC that measures tens of picoseconds of time in the barrel section

02 BTL: MTD barrel timing layer


What is MTD BTL?




BTL is a single-layer MIP detector located in-between the outer tracker (OT) and the inner wall of the BTL-Tracker Support Tube (BTST).


It will measure time with \sim 30-60ps resolution.

- ightharpoonup Thin (< 4 cm), large area (38 m²) detector covering $|\eta|$ < 1.5
- > ~10k Sensor Modules, each containing 16 LYSO crystal bars and two 16-channel SiPM arrays
- ➤ Read out with custom TOFHIR2 ASIC
- ➤ Mounted on CO2 cooled trays and installed on inner surface of BTL Tracker Support Tube (BTST)

Schedule of MTD BTL

Assembly timeline

- > Testbeam of sensor in 2023
- ➤ Improved the assembly and QA/QC in 2023 & 2024
- ➤ Assembly Center Certification in 2024
- ➤ Start batch assembly in the Autumn of 2024
- ➤ End assembly in 2025

Module production batch 4	January 7, 2025 Feb 7, 2025 2.76 weeks	Module production batch 4
Module production batch 5	Feb 7, 2025 Mar 11, 2025 3.1w	Module production batch 5
384 Module production batch 6	March 11, 2025 April 11, 2025 3.38 weeks	Module production patch 6
Module production batch 7	April 11, 2025 May 13, 2025 3.7 weeks	Module production batch 7
386 Module production batch 8	May 13, 2025 June 12, 2025 1m	Module production batch 8
Module production batch 9	June 12, 2025 July 15, 2025 1.1m	Module production batch 9
B.A. 3.2 Finish of module production	July 15, 2025 July 15, 2025 1.1m	B.A. 3.2 Finish of module production
389 Tray production & assembly	Nov 18, 2024 Sep 16, 2025 0 days	Tray production & assembly
390 B.A.4.0 Tray production starts	Nov 18, 2024 Nov 18, 2024 2w	B.A.4.0 Tray production starts
391 Tray production batch 1 - module mounting	Nov 18, 2024 Dec 6, 2024 2w	Tray production batch 1 - module mounting
392 Tray production batch 1 - CC, cabling, testing	Dec 27, 2024 Jan 9, 2025 0 days	Tray production batch 1 - CC, cabiling, testing
393 Tray production batch 2 - module mounting	Dec 6, 2024 Dec 26, 2024 2.02 weeks	Tray production batch 2 - module mounting
394 Tray production batch 2 - CC, cabling, testing	Jan 10, 2025 Jan 23, 2025 0 days	Tray production batch 2 - CC, cabling, testing
B.A.4 Tray production 25% done	Jan 23, 2025 Jan 23, 2025 0 days	B.A.4 Tray production 25% done
396 Tray production batch 3 - module mounting	Jan 24, 2025 Feb 12, 2025 0 days	Tray production batch 3 - module mounting
397 Tray production batch 3 - CC, cabling, testing	Feb 13, 2025 Feb 26, 2025 0 days	Tray production batch 3 - CC, cabling, testing
398 Tray production batch 4 - module mounting	Feb 27, 2025 Mar 18, 2025 0 days	Tray production batch 4 - module mounting
399 Tray production batch 4 - CC, cabling, testing	March 19, 2025 April 1, 2025 0 days	Tray production batch 4 - CC, cabling, testing
B.A.5 Tray production 50% done	April 1, 2025 April 1, 2025 0 days	B.A.5 Tray production 50% done
Tray production batch 5 - module mounting	April 2, 2025 April 21, 2025 0 days	Tray production batch 5 - module mounting
Tray production batch 5 - CC, cabling, testing	April 22, 2025 May 5, 2025 0 days	Tray production batch 5 - CC, cabling, testing
Tray production batch 6 - module mounting	May 6, 2025 May 23, 2025 0 days	Tray production batch 6 - module mounting
Tray production batch 6 - CC, cabling, testing	May 26, 2025 June 6, 2025 0 days	Tray production batch 6 - CC, cabling, testing
Tray production batch 7 - module mounting	June 9, 2025 June 26, 2025 0 days	Tray production batch 7 - module mounting
Tray production batch 7 - CC, cabling, testing	June 27, 2025 July 10, 2025 0 days	Tray production batch 7 - CC, cabling, testing
Tray production batch 8 - module mounting	July 11, 2025 July 30, 2025 0 days	Tray production batch 8 - module mounting
Tray production batch 8 - CC, cabling, testing	July 31, 2025 Aug 13, 2025 0 days	Tray production batch 8 - CC, cabling, testing
Tray production batch 9 - module mounting	Aug 14, 2025 Sep 2, 2025 0 days	Tray production batch 9 - module mounting
Tray production batch 9 - CC, cabling, testing	Sep 3, 2025 Sep 16, 2025 0 days	Tray production batch 9 - CC, cabiling, testing
B.A.6 Tray production 100% finshed	Sep 16, 2025 Sep 16, 2025 0 days	B.A.6 Yay production 100% finshed
112 BTL Integration	Nov 18, 2024 Mar 8, 2028 0 days	BTL Integration C
113 TIF preparation for integration	Nov 18, 2024 May 1, 2025 -4.2h	TIF preparation for integration
TIF preparation for integration	Jan 30, 2025 Mar 27, 2025 -4.2h	TIF preparation for integration
BE prototype intalled in TIF	Nov 18, 2024 Jan 13, 2025 2.6m	BE prototype intalled in TIF
Tray test insertion	Mar 27, 2025 May 1, 2025 -4.2h	Tray test insertion —
B.A.7.0 TIF ready for BTL integration	May 1, 2025 May 1, 2025 -4.2h	B.A.7.0 TIF ready for BTL integration
118 TST integration	May 1, 2025 July 29, 2027 0 days	TST integration
B.A.7 Start of TST integation	May 1, 2025 May 1, 2025 -4.2h	B.A.7 Start of TST integation
120 TST+ integration	May 1, 2025 July 29, 2025 -4.2h	TST+ integration
121 Insert batch 1 of 6 trays	May 1, 2025 May 14, 2025 -4.2h	Insert batch 1 of 6 trays
422 Connecting batch 1 of 6 trays	May 14, 2025 May 27, 2025 -4.2h	Connecting batch 1 of 6 trays
423 Insert batch 2	May 14, 2025 May 27, 2025 -4.2h	Insert batch 2
424 Connect batch 2	May 27, 2025 June 9, 2025 -4.2h	Connect batch 2
425 Insert batch 3	May 27, 2025 June 9, 2025 -4.2h	Insert batch 3
426 Connect batch 3	June 9, 2025 June 20, 2025 -4.2h	Connect batch 3
127 Insert batch 4	June 9, 2025 June 20, 2025 -4.2h	Connect pacer 3
428 Connect batch 4	June 20, 2025 July 3, 2025 -4.2h	Insert Datch 4

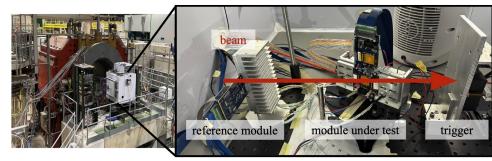
Test beam for BTL Module research and selection

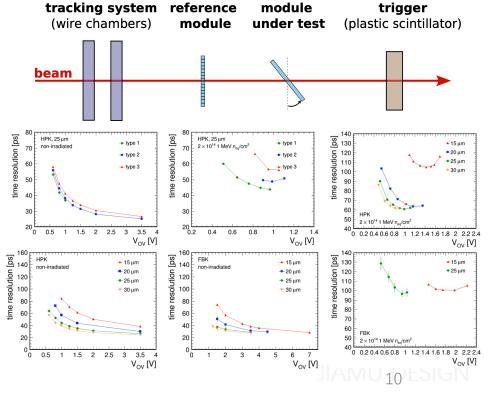
Analysis of the time resolution of BTL module using minimum ionizing particles.

Setup:

➤ Conducted on CERN (180 GeV pion) and FNAL (120 GeV proton) beams

The time resolution is well modeled as a function of few SiPM parameters:

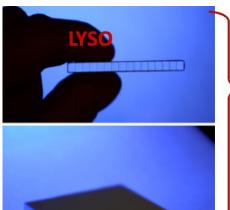

• gain, PDE and DCR

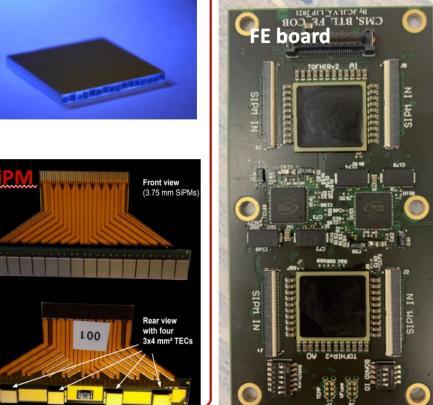

The optimal choice of SiPM and LYSO:

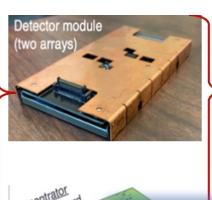
 \triangleright 25 μ m SiPM cell size from HPK SiPM and 3.75 mm thick LYSO

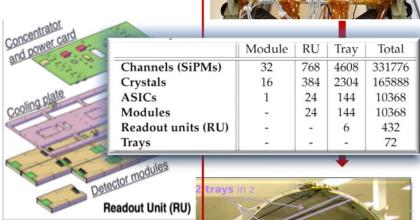
Such a sensor module configuration achieves a time resolution of about

- > 25 ps with non-irradiated SiPMs
- ➤ 60 ps under the irradiation, annealing and temperature conditions representative of the end of the BTL detector operation






Assembly of MTD BTL from Sensor Modules


Module LYSO array

All components will be assembled and validated at 4 global BTL Assembly Centers (BACs)

Trays will be shipped to CERN, integrated into the BTST and commissioned in the Tracker Integration Facility

11

BTL Assembly "Scheme"

CERN

Cooling plate assembly and QC

BACs

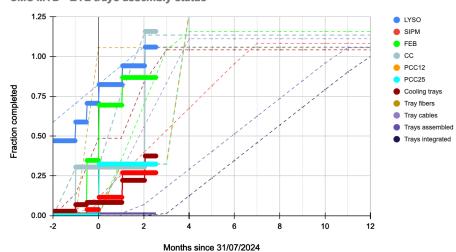
SM assembly and QC.

DM assembly and QC.

Tray population with DMs, on detector electronics & cables. Fully assembled tray QA/QC procedures.

Sample tray QA/QC

CERN


Tray installation into BTST & commissioning

BTST (Tracker and BTL) installed at P5

Four Main assembly of the detector trays is carried out at four BTL Assembly Centers (BACs)

- Milano-Bicocca.
- University of Virginia.
- Caltech.
- · Peking University.

CMS MTD - BTL trays assembly status

Assembly and QA/QC of Sensor Module

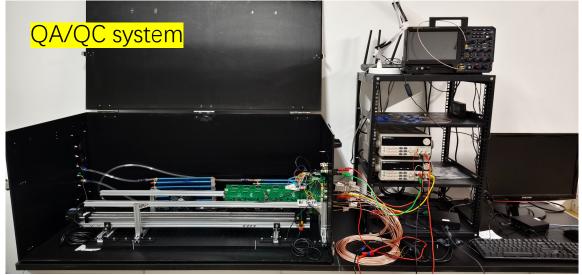
沙山东水湾

Assembly of Sensor Module

Assembly materials

- RTV with a high refractive index close to that of LYSO Assembly tool : GAMBIT
- Control RTV thickness, SiPM/LYSO alignment, and others

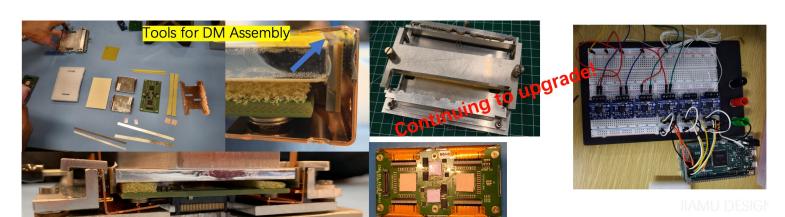
Standardization of Assembly flow

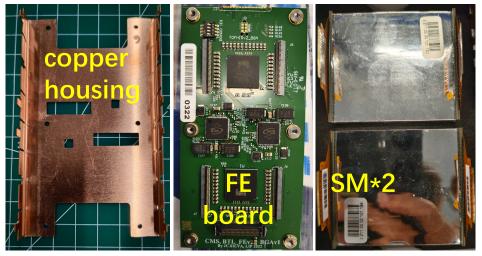

• The humidity, time, and other ranges for placing the module

QA/QC of Sensor Module

- measure the light yield of each channel to show the assembly quality
- Components: Electronic module, constant temperature dark box, data collection system, and source movement system

Assembly and QA/QC of Detector Module



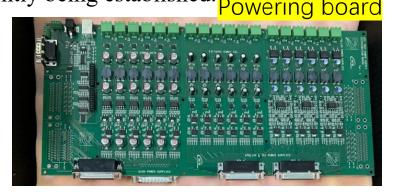

Detector Module : Sensor module, FE front-end electronic board, and copper shell for heat exchange

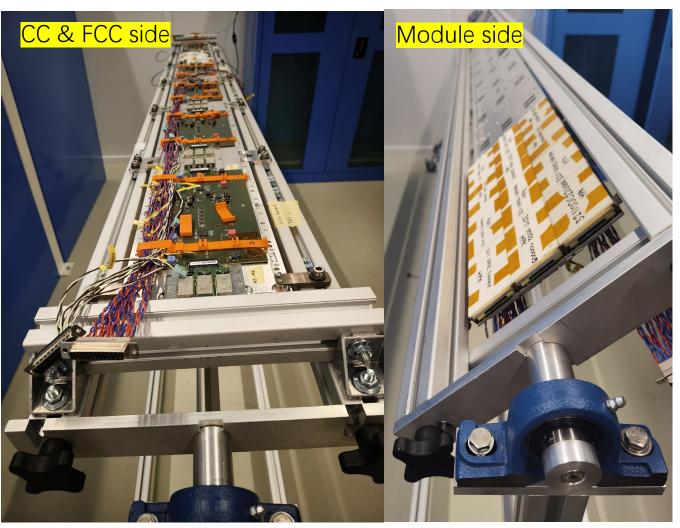
Assembly process of DM: Thermal contact

- ➤ Good contact between the outer end of TEC on SiPM and the copper
- Coverage of thermal pads on important chip surfaces on FE board
- Avoid contact between LYSO crystals and other components

QA/QC of the DM mainly involves thermal coupling testing

Assembly and QA/QC of BTL Tray


MTD BTL Tray


- A BTL Tray will cover a detector range of 10 degrees and 2.5 meters at η
- ➤ A total of 72 Trays cover the entire barrel of the MTD time detector

Assembly of BTL Tray

➤ 6 RUs, each includes a cooling plate, CC board, PCC board, and 12 DMs.

The tray QA/QC system based on Serenity board and custom tray powering board is currently being established. Powering board

Cooling-plate, BTST at CERN

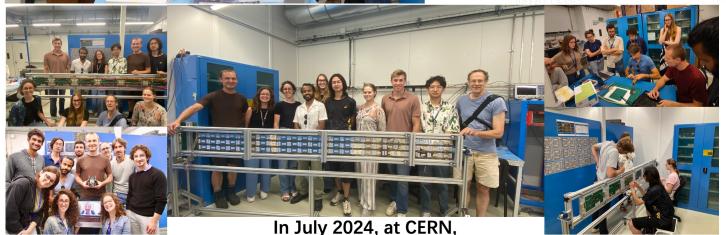
Cold-tray assembly at CERN


- ➤ Components received and QCed at CERN
- Finished cold-trays placed in the shipping cradles
- > Currently operating at 2 trays/day (3 trays/day possible).

BTL-BTST mechanical interface consists of

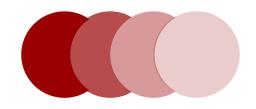
- ➤ 1'368 threaded inserts embedded into the BTST (2 per foot)
- ➤ 684 aluminium feet (9 per I-beam)
- > 76 glass-fiber I-beams (BTL rails)

Research and discussion on BTL assembly



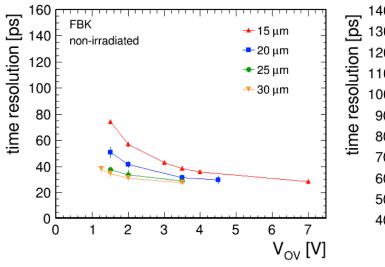
The first complete detector module was produced at CERN by the end of 2023

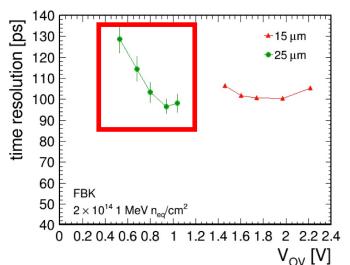
for the manufacturing process of detector modules


In March 2024 at CERN,
Complete the assembly of the whole RU for the first time

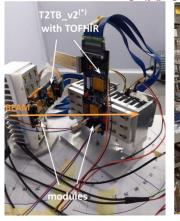
- BTL production is moving ahead according to the latest schedule!
- For the latest progress on BTL work, please refer to <u>Karlis</u>.

Completed the assembly of the entire Tray for the first time, QA/QC was carried out, and the assembly process was basically determined

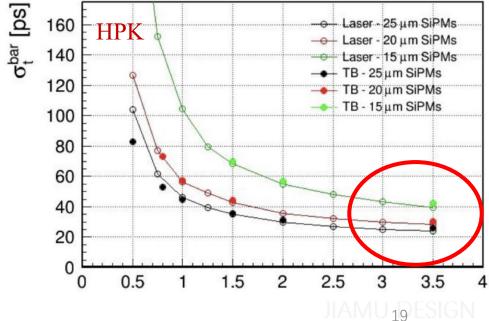

03 BTL Work and Local Lab Setups at PKU


Some Test Beam Study by PKU (1)

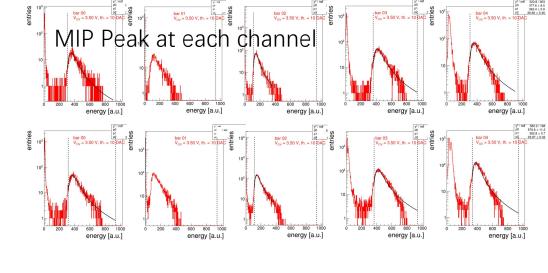
Conducted on CERN (180 GeV pion) and FNAL (120 GeV proton) beams


SiPM

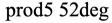
- ➤ Main optimization and research parameters: Cell size of SiPM
 - The time resolution for modules with non-irradiated SiPMs of different cell-sizes (15, 20, 25 μ m)
 - > 25 μm has the best time resolution
- ➤ More tests were conducted, such as comparing the time resolution of SiPM from different manufacturers
- > Optimization of SiPM parameters has been completed

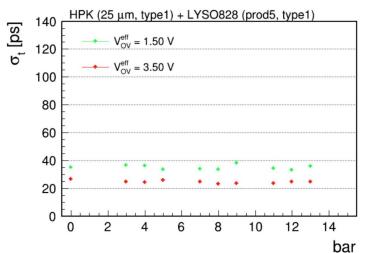


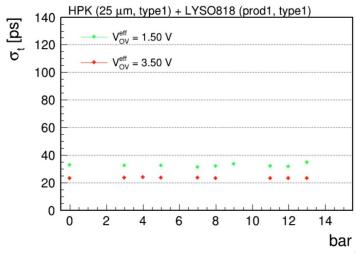
TOFHIR2X



Some Test Beam Study by PKU (2)

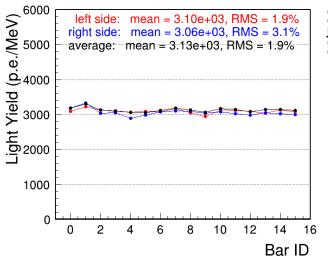

LYSO

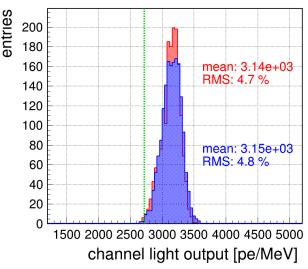

- ➤ Preliminary comparative tests were conducted on the quality of LYSO (size, yield, etc.) from various manufacturers
- Finally, perform time resolution testing on high-performance manufacturers using beam current
- ➤ The time resolution of manufacturers Prod1 and Prod5 was compared as follows
- > LYSO optimization has been completed


52deg Results are measured at the optimal threshold

LYSO	Vov/V	angle/deg	t_{Res}/ps	error/%
		32	38.2	6.9
11	1.50	52	32.2	3.1
		64	30.9	9.0
prod1	3.50	32	25.7	2.1
		52	23.5	1.2
		64	23.6	7.2
mmod5	1.50	52	35.1	4.3
prod5	3.50	32	24.6	4.0

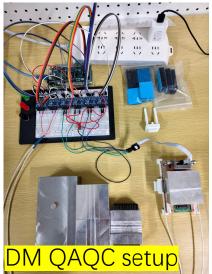
prod1 52deg


IAMU 20 ESIGN

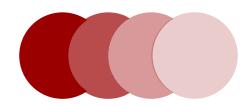

BTL Assembly and QAQC at PKU

- For each Assembly Center, our task is to complete the full assembly process from LYSOs & SiPMs to the Tray.
- \triangleright Assembly will span this year and the first half of next year, \sim 2600 Modules (18 BTL Trays) at PKU.
- > Recently, we
 - ✓ The assembly and QAQC of sensor module required for the first tray have been completed
 - ✓ The assembly and QAQC of the first batch of detector modules are about to begin
 - ✓ Setting up the Tray testing platform

PKU Lab Setups

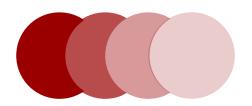

SM Assembly

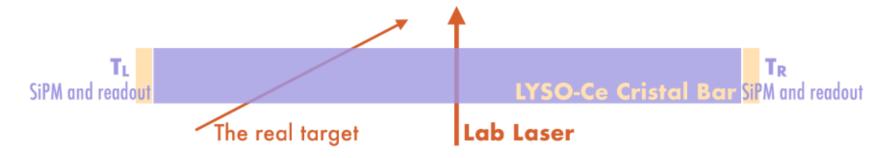
SM glued and tools



JIAMU 22 ESIGN

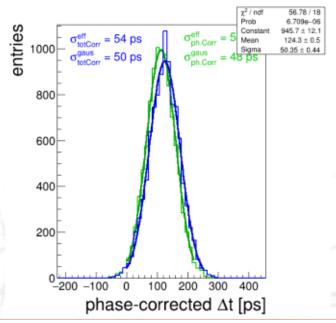
04 Summary


Summary


- ➤ MTD, a new CMS Phase-II detector for the HL-LHC will be added to CMS to help meet the challenge of high luminosity.
 - ✓ BTL is a single-layer MIP detector which will measure time with \sim 30-60 ps resolution.
- > BTL is not "moving to production", BTL is "in production".
 - ✓ We are confident that BTL will be the first fully completed CMS Phase-2 sub-detector come 4th November 2025.
- For PKU, We actively participate in the comprehensive work of MTD BTL, and, as one of the assembly centers, undertake 1/4 of the assembly work.
 - ✓ Assembly and QAQC work is currently underway at PKU!

Thanks for your attention!

Back up


$$T_{ave} = 1/2(T_L + T_R) \qquad \sigma_{ave} = 1/2\sqrt{\sigma_L^2 + \sigma_R^2}$$

$$T_{diff} = T_L - T_R$$
 $\sigma_{diff} = \sqrt{\sigma_L^2 + \sigma_R^2}$

- CMS clock distribution: 15 ps;
- Digitization: 7 ps;
- Electronics: 8 ps;
- Photo-statistics: 25–30 ps;
- Noise (SiPM dark counts): negligible at startup, 50 ps after 3000 fb⁻¹; summarized in the equation:

$$\sigma_{\mathsf{t}}^{\mathsf{BTL}} = \sigma_{\mathsf{t}}^{\mathsf{clock}} \oplus \sigma_{\mathsf{t}}^{\mathsf{digi}} \oplus \sigma_{\mathsf{t}}^{\mathsf{ele}} \oplus \sigma_{\mathsf{t}}^{\mathsf{phot}} \oplus \sigma_{\mathsf{t}}^{\mathsf{DCR}} \ .$$

$$\sigma_{diff} = 2 \times \sigma_{ave}$$

Experiment	r	σ_{T}	$r/\sigma_{\rm T}~(\times 100)$
	(m)	(ps)	$(m \times ps^{-1})$
STAR-TOF	2.2	80	2.75
ALICE-TOF	3.7	56	6.6
CMS-MTD	1.16	30	3.87

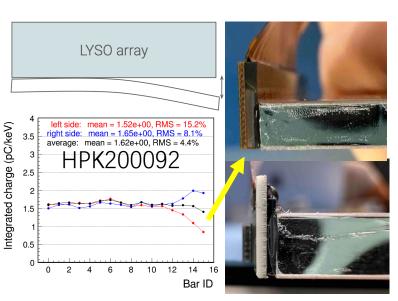
Table 1.3: Nominal radiation doses and fluences at various locations of the timing layers after 3000 fb⁻¹. The last two columns show the radiation levels providing a safety margin of a factor 1.5. The fluence is normalized to 1 MeV neutron equivalent in silicon.

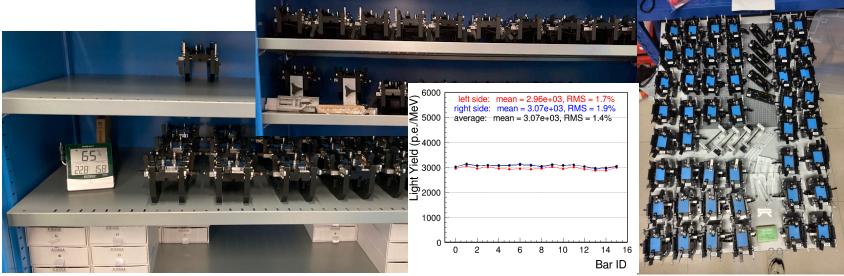
				3000 fb^{-1}		$1.5 \times 3000 \text{ fb}^{-1}$	
Region	$ \eta $	<i>r</i> (cm)	z (cm)	n_{eq}/cm^2	Dose (kGy)	n_{eq}/cm^2	Dose (kGy)
Barrel	0.0	116	0	1.65×10^{14}	18	2.48×10^{14}	27
Barrel	1.15	116	170	1.80×10^{14}	25	2.70×10^{14}	38
Barrel	1.45	116	240	1.90×10^{14}	32	2.85×10^{14}	48
Endcap	1.6	127	303	1.5×10^{14}	19	2.3×10^{14}	29
Endcap	2.0	84	303	3.0×10^{14}	50	4.5×10^{14}	75
Endcap	2.5	50	303	7.5×10^{14}	170	1.1×10^{15}	255
Endcap	3.0	31.5	303	1.6×10^{15}	450	2.4×10^{15}	675

Table 1.1: Expected scientific impact of the MIP Timing Detector, taken from Ref. [8].

Signal	Physics measurement	MTD impact	
$ ext{H} ightarrow \gamma \gamma$ and	+15–25% (statistical) precision on the cross section Isolation and		
H→4 leptons	→ Improve coupling measurements	Vertex identification	
$VBF \rightarrow H \rightarrow \tau \tau$	+30% (statistical) precision on cross section	Isolation	
	ightarrow Improve coupling measurements	VBF tagging, $p_{\rm T}^{\rm miss}$	
HH	+20% gain in signal yield	Isolation	
	\rightarrow Consolidate searches	b-tagging	
EWK SUSY	+40% background reduction	MET	
	ightarrow 150 GeV increase in mass reach	b-tagging	
Long-lived	Peaking mass reconstruction	$\beta_{\rm LLP}$ from timing of	
particles (LLP)	ightarrow Unique discovery potential	displaced vertices	

JAMU 28 ESIGN


GAMBIT performance tests and upgrade in the pre-production


- ➤ Alignment of Crystal and SiPM → Adjust the height of the platform to approximately 200 μm
- ➤ Uneven adhesive thickness → Increasing the thickness of the Stencil and applying rubber bands for assistance

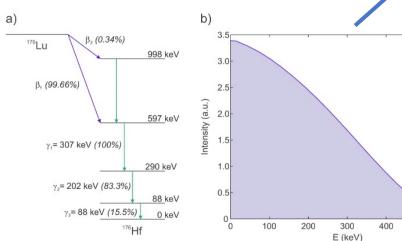
Standardization of Assembly flow

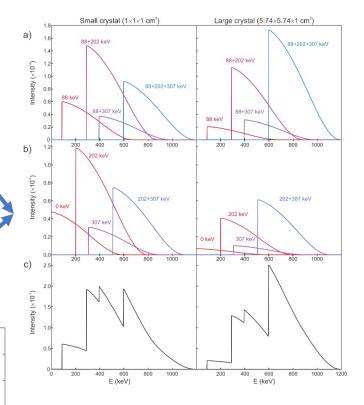
- > Referring to the conditions that are most conducive to the uniform and smooth hardening of the RTV
- → The humidity, time, and other ranges for placing the module after assembly have been standardized

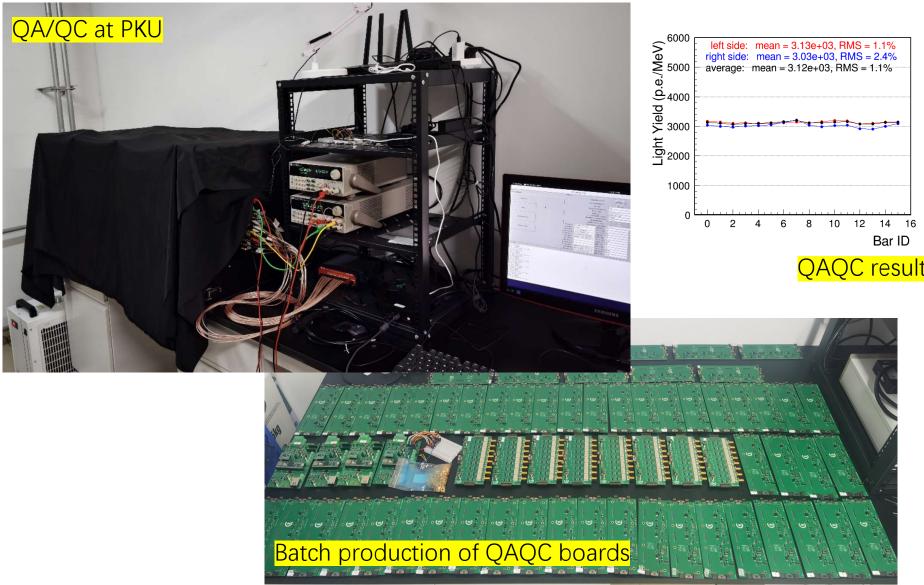
The development of LYSO+SiPM assembly tools **GAMBIT** has been completed and shipped to PKU

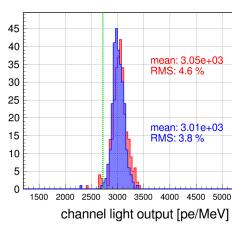
LYSO Intrinsic Spectrum

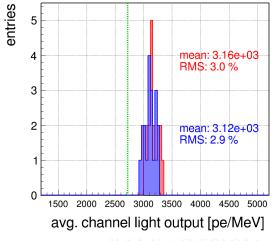
- 176 Lu: β decay \rightarrow 176 Hf excited state: γ cascade decay
- 88 keV, 202 keV, 307 keV


$$P(E) = \alpha_{88}\beta(E - 88) + \alpha_{202}\delta(E - 202) + \alpha_{290}\beta(E - 290) + \alpha_{307}\delta(E - 307) + \alpha_{395}\beta(E - 395) + \alpha_{509}\delta(E - 509) + \alpha_{597}\beta(E - 597)$$


Single Photoelectron Charge


• SPE histogram presents the amount of charge carried by a single photon


The ratio is proportional to the light yield



QAQC result of the SM for tray 1

JIAMU 32 ESIGN