28th Mini-Workshop on the Frontier of LHC, Tonghua, July 08-12, 2024

Transverse Spin Asymmetry as a New Probe of SMEFT Chirality-Flip Operators

Xin-Kai Wen (文新锴) Peking University

In collaboration with Bin Yan, Zhite Yu and C.-P. Yuan *Phys.Rev.Lett.* **131** (2023) 24, 241801 In collaboration with Hao-Lin Wang, Hongxi Xing and Bin Yan *Phys.Rev.D* **109** (2024) 9, 095025 Works in Progress

2024/07/09, THNU @ Tonghua, Jílín

New Physics

Lots of Open Questions

Xin-Kai Wen (Peking University)

New Physics and SMEFT

B. Grzadkowski, et al. *JHEP* 10 (2010) W. Buchuller, D. wyler, 1986

Powerful Tool @ EW to confront with NP effects

New Physics models excluded to Multi-TeV @ LHC.

Xin-Kai Wen (xinkaiwen@pku.edu.cn)

SMEFT Chirality-Flip Operator

Direct effect & Indirect probes of NP quantum effects

Dipole Operator: (g - 2)? EDM?

D.P. Aguillard et al., (Muon g-2), Phys. Rev. Lett. 131 (2023) 16

same NP source ? Z only detected by colliders

interference~0 for tiny mass

Non-interfering Leading effect

Data for Chirality-Flip Operator

Constrained poorly in traditional rates of cross-section and width, suffer from contaminations

⁽R. Boughezal et al. *Phys.Rev.D* 104 (2021)...)

How to probe Chirality-Flip operators at $O(1/\Lambda^2)$?

Xin-Kai Wen (xinkaiwen@pku.edu.cn)

⁽R. Boughezal et al., *Phys.Rev.D* 108 (2023) 7)

How to Probe Chirality-Flip Operator at $1/\Lambda^2$

Our proposal:

Ken-ichi Hikasa, *Phys.Rev.D* 33 (1986) 3203 *Phys.Rev.D* 38 (1988) 1439

Transverse polarization effect of fermions

Interference of the different helicity amplitudes

$$\rho = \frac{1}{2} \left(1 + \boldsymbol{\sigma} \cdot \boldsymbol{s} \right) = \frac{1}{2} \begin{pmatrix} 1 + \lambda & b_{\mathrm{T}} e^{-i\phi_0} \\ b_{\mathrm{T}} e^{i\phi_0} & 1 - \lambda \end{pmatrix}$$

$$|\mathcal{M}|^2 = \rho_{\alpha_1 \alpha_1'}(\boldsymbol{s}) \rho_{\alpha_2 \alpha_2'}(\bar{\boldsymbol{s}}) \mathcal{M}_{\alpha_1 \alpha_2}(\phi) \mathcal{M}^*_{\alpha_1' \alpha_2'}(\phi)$$

- Allow chirality-flip NP, Forbid the others
 Single helicity-flip in fermion line
- Transverse Spin Asymmetry

Nontrivial azimuthal behavior

 f_{L}^{+} f_{R}^{-} $|h = +\rangle\langle h = -|$

 $\mathcal{O}(1/\Lambda^2)$ leading effect

X.-K.W, BY, ZY, C.-P.Y, *Phys.Rev.Lett.* 131 (2023) 24
RB, DF, FP, WV, *Phys.Rev.D* 107 (2023) 07
H.-L.W, X.-K.W, HX, BY *Phys.Rev.D* 109 (2024) 9

Transverse Spin Induces Azimuthal Behavior

Breaking rotational invariance

Nontrivial azimuthal behavior

$$\mathcal{M}_{\lambda_{1},\lambda_{2}}\left(\theta,\phi\right)=e^{i\left(\lambda_{1}-\lambda_{2}\right)\phi}\mathcal{T}_{\lambda_{1},\lambda_{2}}\left(\theta\right)$$

X.-K.W, BY, ZY, C.-P.Y, work in progress

STSAA@ee collider:

dipole operator $\rightarrow \mathcal{M}_{\pm\pm}$, massless SM $\rightarrow \mathcal{M}_{\pm\mp}$

DSA@eP collider:

Four-F operator $\rightarrow \mathcal{M}_{-i,-j}$, massless SM $\rightarrow \mathcal{M}_{ij}$

G. Moortgat-Pick et al. Phys. Rept. 460 (2008), JHEP 01 (2006)

A New Probe of Dipole Operators @ee collider

 $\frac{2\pi \, d\sigma^{i}}{\sigma^{i} \, d\phi} = 1 + \underbrace{A_{R}^{i}(b_{T}, \bar{b}_{T}) \cos \phi}_{\text{Re}[\Gamma_{f}]} \underbrace{Im[\Gamma_{f}]}_{\text{Im}[\Gamma_{f}]} \sin \phi}_{\text{SM \& other NP}} + \underbrace{\mathcal{O}(1/\Lambda^{4})}_{\text{SM \& other NP}}$ $\vec{s} \cdot \vec{p}_{f} \propto \cos \phi \qquad \vec{s} \times \vec{p}_{f} \propto \sin \phi$ CP-conserving CP-violation $\underbrace{\mathcal{O}_{L}^{i}}_{e_{R}} \underbrace{\mathcal{O}_{R}^{i}(\phi_{s} - \phi_{\ell})}_{e_{L}} = \underbrace{\mathcal{O}_{R}^{i}(\phi_{s} - \phi_{\ell})}_{e_{L}}$ X-K.W, BY, ZY, C.-P.Y, Phys. Rev. Lett. 131 (2023) 24

Linearly dependent on the dipole couplings Γ_f and spin b_T

$$A_{LR}^{i} = \frac{\sigma^{i}(\cos\phi > 0) - \sigma^{i}(\cos\phi < 0)}{\sigma^{i}(\cos\phi > 0) + \sigma^{i}(\cos\phi < 0)} = \frac{2}{\pi}A_{R}^{i}$$
$$A_{UD}^{i} = \frac{\sigma^{i}(\sin\phi > 0) - \sigma^{i}(\sin\phi < 0)}{\sigma^{i}(\sin\phi > 0) + \sigma^{i}(\sin\phi < 0)} = \frac{2}{\pi}A_{I}^{i},$$

Pinning down Dipole Operators @ee collider

$$\mathcal{L}_{\text{eff}} = -\frac{1}{\sqrt{2}} \bar{\ell}_L \sigma^{\mu\nu} \left(g_1 \Gamma_B^e B_{\mu\nu} + g_2 \Gamma_W^e \sigma^a W_{\mu\nu}^a \right) \frac{H}{v^2} e_R + \text{h.c.} \qquad \qquad \Gamma_{\gamma}^e = \Gamma_W^e - \Gamma_B^e \\ \Gamma_Z^e = c_W^2 \Gamma_W^e + s_W^2 \Gamma_B^e$$

Much stronger sensitivity than other approaches by 1~2 orders Offering a new opportunity for directly probing potential CP-violating effects

Xin-Kai Wen (xinkaiwen@pku.edu.cn)

Transverse Beam- and Target-SSA @ EIC

R. Boughezal, et al., *Phys.Rev.D* 107 (2023) 7

To probe lepton or quark dipole operator at $O(1/\Lambda^2)$

Polarized DIS (Transverse lepton/ transverse PDF)

$$|\mathcal{M}|^2 \propto \operatorname{Re}[\Gamma_q e^{i(\phi_s - \phi_\ell)}]$$

$$A_{TU} = \frac{\sigma(e^{\uparrow}) - \sigma(e^{\downarrow})}{\sigma(e^{\uparrow}) + \sigma(e^{\downarrow})}$$

$$A_{UT} = \frac{\sigma \left(e^U p^{\uparrow} \right) - \sigma \left(e^U p^{\downarrow} \right)}{\sigma \left(e^U p^{\uparrow} \right) + \sigma \left(e^U p^{\downarrow} \right)}$$

Transverse Double-Spin-Asymmetry(DSA)@EIC

$$A_{TT} = \frac{\sigma \left(e^{\uparrow} p^{\uparrow} \right) + \sigma \left(e^{\downarrow} p^{\downarrow} \right) - \sigma \left(e^{\uparrow} p^{\downarrow} \right) - \sigma \left(e^{\downarrow} p^{\uparrow} \right)}{\sigma \left(e^{\uparrow} p^{\uparrow} \right) + \sigma \left(e^{\downarrow} p^{\downarrow} \right) + \sigma \left(e^{\uparrow} p^{\downarrow} \right) + \sigma \left(e^{\downarrow} p^{\uparrow} \right)}$$

 \geq **2** ϕ and **flat** shape

SM

H.-L. Wang, **X.-K. Wen**, H. Xing and B. Yan, *Phys.Rev.D* **109** (2024) 9, 095025

Scalar/Tensor four-fermion operator

Without contamination from the SM and other NP

Xin-Kai Wen (xinkaiwen@pku.edu.cn)

28thLHC_Mini-WS@Tonghua

No.11

Probing four-fermion operators *@***EIC & EIcC**

H.-L. Wang, X.-K. Wen, H. Xing and B. Yan, Phys. Rev.D 109 (2024) 9, 095025

scalar/tensor four-fermion operator

$$\mathcal{O}_{ledq} = \left(\bar{L}^{j}e\right)\left(\bar{d}Q^{j}\right),$$

$$\mathcal{O}_{lequ}^{(1)} = \left(\bar{L}^{j}e\right)\epsilon_{jk}\left(\bar{Q}^{k}u\right),$$

$$\mathcal{O}_{lequ}^{(3)} = \left(\bar{L}^{j}\sigma^{\mu\nu}e\right)\epsilon_{jk}\left(\bar{Q}^{k}\sigma_{\mu\nu}u\right).$$

▶ highly depend on transversity $h(x, \mu)$

Z.-B. Kang et al., *Phys.Rev.D* 93 (2016) 1 C. Zeng et al., *Phys.Rev.D* 109 (2024) 5 JAM collaboration *Phys.Rev.D* 106 (2022) 3

- ✓ Our results are *stronger* or *comparable* to other $O(1/\Lambda^4)$ -approaches
- ✓ Enabling direct study of potential CP-violating effects.

Summary

- \checkmark The muon g-2 data and many NP models may hint SMEFT chirality-flip operators
- ✓ Chirality-flip operators are difficult to be probed since the leading effects $@1/\Lambda^4$
- ✓ We propose a new method to linearly probe them (a_1/Λ^2) via *transverse fermions*
 - Interference of the different helicity amplitudes with single helicity-flip
 - Nontrivial azimuthal behavior
- ✓ Simultaneously constraining well both Re & Im parts
 - > Without contaminations from other NP and SM, without mass-suppression
 - ➢ Offering a new opportunity for directly probing potential CP-violating effects.
- ✓ Our bound have much stronger sensitivity than other approaches by 1~2 orders
- ✓ Future colliders (Z/Higgs/Top factory...)

Polarized Muon collider, Muon-Ion collider, hadron colliders, Electron-Ion Collider...

Thank you

Backup: Some Formulae

$$|\Theta,\chi\rangle_1 = \cos\frac{\Theta}{2}|h=+\rangle + \sin\frac{\Theta}{2}e^{i\chi}|h=-\rangle$$

Superposition of the two helicity states along polarization $\vec{s}(\Theta, \chi)$

 $T_{h\bar{h}} = \langle \phi, \dots | T | \chi, \bar{\chi} \rangle = \langle \phi = 0, \dots | T | \chi - \phi, \bar{\chi} - \phi \rangle \qquad 2\text{-to-2 rotational invariance}$

Ken-ichi Hikasa, Phys. Rev.D 33 (1986) 3203, PhysRevD.38 (1988) 1439

1

$$|\mathcal{M}|^{2}\left(\boldsymbol{s}, \bar{\boldsymbol{s}}, \theta, \phi\right) = \sum_{\alpha_{1}, \alpha_{2}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}} \rho_{\alpha_{1}, \alpha_{1}^{\prime}}\left(\boldsymbol{s}\right) \bar{\rho}_{\alpha_{2}, \alpha_{2}^{\prime}}\left(\bar{\boldsymbol{s}}\right) \mathcal{M}_{\alpha_{1}, \alpha_{2}}\left(i \to f; \theta, \phi\right) \mathcal{M}_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}^{\dagger}\left(i \to f; \theta, \phi\right)$$

$$s = (b_1, b_2, \lambda) = (b_T \cos \phi_0, b_T \sin \phi_0, \lambda) \qquad \rho = \frac{1}{2} (1 + \boldsymbol{\sigma} \cdot \boldsymbol{s})$$

$$\mathcal{M}_{\lambda_1, \lambda_2} (\theta, \phi) = e^{i(\lambda_1 - \lambda_2)\phi} \mathcal{T}_{\lambda_1, \lambda_2} (\theta) \qquad |M|^2 = |M|^2_{\text{unpol}} - \frac{1}{2} \lambda_T \bar{\lambda}_T \text{Re}[T^*_{++}T_{--}] \\ - \frac{1}{2} \lambda_T \bar{\lambda}_T \text{Re}[e^{-2i\phi}T^*_{+-}T_{-+}] \\ + \frac{1}{2} \lambda_T \text{Re}[e^{-2i\phi}T^*_{+-}T_{-+}] \\ + \frac{1}{2} \lambda_T \text{Re}\left[e^{-i\phi}(T^*_{+-}T_{--} + T^*_{++}T_{-+})\right] \\ - \frac{1}{2} \bar{\lambda}_T \text{Re}\left[e^{-i\phi}(T^*_{+-}T_{-+} + T^*_{+-}T_{-+})\right]$$

 $\eta = \frac{\eta_c \eta_d}{\eta_a \eta_b} \cdot (-1)^{s_a + s_b - s_c - s_d}$

X.-K.W, BY, ZY, C.-P.Y, works in progress

Bhung Sing-Kai (Peking University)

Backup

The sensitivity to Γ_Z^e is much stronger than $\Gamma_{\gamma}^e \ge$ Parity property of helicity amplitude Why the limit difference between the Aligned Spin and the Opposite Spin? \ge CP property The asymmetry at MuIC is significantly larger than at EIC \ge Energy enhancement

$$\begin{aligned} A_{TT}^{w} &= \frac{1}{P_{T,e}P_{T,p}} \frac{1}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \\ &\times \int_{0}^{2\pi} d\phi w(\phi) \Big(N_{\uparrow\uparrow}(\phi) + N_{\downarrow\downarrow}(\phi) - N_{\uparrow\downarrow}(\phi) - N_{\downarrow\uparrow}(\phi) \Big) \end{aligned} \qquad \delta A_{TT}^{w} \simeq \frac{1/(P_{T,e}P_{T,p})}{\sqrt{4\mathcal{L}\sigma(P_{T,e(p)} = 0)}} \cdot \sqrt{\frac{\int_{0}^{2\pi} d\phi w^{2}(\phi)}{2\pi}} \end{aligned}$$

Xin-Kai Wen (xinkaiwen@pku.edu.cn)

Backup: Polarized beam realization

Transverse polarization is more natural Sokolov-Ternov effect (92.4%, minutes-hours, 50GeV) Laser-assistant Spin-precession

Photon-based scheme:

Polarized positrons are produced via pair production in a thin target from circularly-polarized photons with energy of multi-MeV (up to about 100 MeV). The cost difference between an polarized source and an upgrade from a unpolarized source is small (~ 1%). At 500 GeV, loss of polarization <1%, at IP <0.25%.

Polarized electron source consists of a polarized high-power laser beam and a high- voltage dc gun with a semiconductor photocathode.

Only polarization parallel or anti-parallel to the guide fields of the damping ring is preserved. Need to avoid spin-orbit coupling resonance depolarizing effects.

The spin rotator systems between the damping rings and the main linacs *permit the setting of arbitrary polarization vector orientations* at the IP.

Polarized-photons source:

I. a high-energy electron beam (>~ 150 GeV) passing through a short period, helical undulator. (E-166, SLAC)

II. Compton backscattering of laser light off a GeV energy-range electron beam. (KEK) In both schemes a polarization of about $|Pe+| \ge 90\%$ is reported.

Muons produced from pion decays are naturally polarized. The level of polarization in the lab frame depends on the initial pion energy and decay angle.

G. Moortgat-Pick et al. *Phys.Rept.* 460 (2008), hep-ph/0507011 D. Acosta and W. Li, Nucl.Instrum.Meth.A 1027 (2022) 166334