

Quantum Entanglement at High-energy Colliders

Kun Cheng 程焜 28th Mini-workshop on the frontier of LHC

Quantum information \Leftrightarrow Particle physics

Measuring Quantum Correlations at Colliders

Also Talk of Yu Shi

01. Quantum Review

02. Collider Review ($t\bar{t}$ at LHC)

03. Phenomenology

Quantum computing for high energy physics.

Talks of Ying-Ying Li, Xiaohui Liu and Ji-Chong Yang Theory aspect:

- QI in QFT
- Entanglement and symmetry *Talk of Ming-Lei Xiao*

Quantum Review

State, entanglement and Bell inequality

Quantum Mechanics: State and Density matrix

- Pure state \longrightarrow Wave function $|\psi
 angle$
- Mixed state \longrightarrow Generalize $|\psi\rangle\langle\psi|$ to density matrix ho
- General density matrix (2x2) for 1 qubit, 3 parameters B_i

$$ho = rac{I_2 + B_i \sigma_i}{2}, \quad ec{B} = \operatorname{tr}(ec{\sigma}
ho), \quad |ec{B}| \leq 1$$

• General density matrix (4x4) for 2 qubit, 15 parameters

ł

$$\rho = \frac{1}{4} \left(\mathbf{I}_4 + \underline{B}_i^+ \sigma_i \otimes \mathbf{I}_2 + \underline{B}_i^- \mathbf{I}_2 \otimes \sigma_i + \underline{C}_{ij} \sigma_i \otimes \sigma_j \right)$$

$$\begin{aligned} \textbf{Example} & |\Psi_1\rangle = \frac{|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle}{\sqrt{2}}, \quad C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ |\Psi_0\rangle = \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}, \quad C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \\ |\Psi_2\rangle = i\frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ |\Psi_3\rangle = -\frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \end{aligned}$$

Quantum Mechanics: State and Density matrix

• General density matrix (4x4) for 2 qubit, 15 parameters

$$\rho = \frac{1}{4} \left(\mathbf{I}_4 + \underline{B}_i^+ \sigma_i \otimes \mathbf{I}_2 + \underline{B}_i^- \mathbf{I}_2 \otimes \sigma_i + \underline{C}_{ij} \sigma_i \otimes \sigma_j \right)$$

$$\frac{B_i^+}{B_i^-} \text{ Polarization vector of qubit A}$$

$$\frac{B_i^-}{C_{ij}} \text{ Polarization vector of qubit B}$$

- Quantum State Tomography:
 - Reconstruction of quantum state from a complimentary set of measurements on a set of identically prepared states.
 - Two qubit quantum tomography: measure 15 parameters B_i^{\pm} and C_{ii}

Quantum Mechanics: Entanglement

A seperable state can be written as $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$. Entangled is non-separable.

- How to tell if a state is entangled? [W. Wootters, quant-ph/9709029] = 1 (maximally entangled) -1-3D
- For unpolarized state $\ \mathscr{C}[\rho] = \frac{-1 3D}{2}$, where

$$D = \min\{\frac{\operatorname{tr}(C)}{3}, \frac{c_1 - c_2 - c_3}{3}, \frac{c_2 - c_1 - c_3}{3}, \frac{c_3 - c_1 - c_2}{3}\}, \quad c_i = \operatorname{eig}(C)$$

- D is closely relatated to collider observables. [Y. Afik and J. de Nova, 2003.02280]
- D < -1/3 (entangled), D > -1/3 (seperable)

Quantum Mechanics: Bell (CHSH) inequality violation [J. Bell, 1964]

Bell inequality: constructed from four two-outcome measurements $\hat{A}_{1,2}$ and $\hat{B}_{1,2}$

Depends on the choice of $A_{1,2}$ and $B_{1,2}$. Example:

$$A_1 = \sigma_x \qquad \langle \sigma_x \otimes \sigma_z \rangle = \operatorname{tr}[(\sigma_x \otimes \sigma_z)\rho] B_2 = \sigma_z \qquad = C_{13}$$

Scanning all possible $A_{1,2}$ and $B_{1,2}$, the Bell inequality is violated *iff*

$${\cal B}[
ho]=2\sqrt{c_1^2+c_2^2}>2$$
 [Horodecki et al, PLA 200, 340 (1995)]

 c_1^2, c_2^2 are the largest two eigenvalue of $C^T C$. Just measure spin correlation [M. Fabbrichesi et al, 2102.11883] [C. Severi et al, 2110.10112]

Stronger condition than entanglement

Quantum Mechanics: Hierarchy of quantum correlation

For discord and steering, see [Y. Afik and J. de Nova, 2209.03969]

Quantum State at Colliders

 $t\bar{t}$ as an example

Collider View: Treating $t\bar{t}$ **as quantum states**

The underlying quantum state of $t\bar{t}$ produced at collider is defined in $\mathcal{H}_k \otimes \mathcal{H}_{spin} \otimes \mathcal{H}_{color}$, we can expand it in terms of $|\mathbf{k}, \alpha \bar{\alpha} \rangle$

$$|t\bar{t}\rangle \propto \int d\mathbf{k} \sum_{\alpha\bar{\alpha}} |\mathbf{k}, \alpha\bar{\alpha}\rangle \langle \mathbf{k}, \alpha\bar{\alpha}| T | I, \lambda\rangle = \int d\mathbf{k} \sum_{\alpha\bar{\alpha}} \mathcal{M}^{\lambda}_{\alpha\bar{\alpha}}(\mathbf{k}) | \mathbf{k}, \alpha\bar{\alpha}\rangle$$

At each scattering angle, the spin density matrix of $t\bar{t}$

$$R(\mathbf{k})_{\alpha\alpha',\bar{\alpha}\bar{\alpha}'} = \sum_{\lambda\lambda'} \mathcal{M}^{\lambda}_{\alpha\bar{\alpha}}(\mathbf{k}) \rho^{I}_{\lambda\lambda'} (\mathcal{M}^{\lambda'}_{\alpha'\bar{\alpha}'}(\mathbf{k}))^{*}$$
$$\rho(\mathbf{k})_{\alpha\alpha',\bar{\alpha}\bar{\alpha}'} = \frac{R(\mathbf{k})_{\alpha\alpha',\bar{\alpha}\bar{\alpha}'}}{\operatorname{Tr}(R(\mathbf{k}))}$$

Colliders View: elementary QCD processes

Unlike-helicity initial state: $q\bar{q}, g_L g_R$

Positive spin correlation (spin triplet at high- p_T region)

Like-helicity initial state: $g_L g_L$, $g_R g_R$

Negative spin correlation (spin singlet near threshold)

[G. Mahlon and S. Parke, 1001.3422]

Collider View: $gg \rightarrow t\bar{t}$ processes

 $ho_{gg
ightarrow t ar{t}} \propto |\mathcal{M}_{\mathrm{unlike}}|^2
ho_{\mathrm{unlike}} + |\mathcal{M}_{\mathrm{like}}|^2
ho_{\mathrm{like}}$

high- p_T region: $g_L g_R$ dominant

Quantum correlation hierachy:

Bell inequality violation (dashed line) is a strong condition than *entanglement* (solid line)

Threshold region: $g_L g_L / g_R g_R$ dominate spin singlet

Collider View: Phase space average and selection cuts

$$\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \sigma_j \right)$$

$$\bar{\rho} = \frac{1}{\sigma} \int d\Omega \frac{d\sigma}{d\Omega} \rho(\Omega)$$
$$\bar{C} = \frac{1}{\sigma} \int d\Omega \frac{d\sigma}{d\Omega} C(\Omega)$$

Proper selection cut \implies Quantum state we want to study

Example:

- D = -0.237, no selection cuts on $t\overline{t}$ [CMS: 1907.03729]
- D = -0.547, with $m_{t\bar{t}} < 380 \text{ GeV}$ [ATLAS: 2311.07288]
- D = -0.480, with $m_{t\bar{t}} < 400 \text{ GeV}$ [CMS: 2406.03976]
- A upper cut on the velocity of $t\bar{t}$ system can increase the spin singlet contribution [J. Aguilar-Saavedra and J. Casas, 2205.00542]

Collider View: Phase space average and basis choice

Collider View: NP contribution to quantum information

. . .

chengkun@pku.edu.cn

Kun Cheng

. . .

Phenomenology: Spin Measurements

Not real *quantum* measurements?

Phenomenology: Decay Products as Spin Analyzer

Decay angle distribution determined by spins of (mother) particles

Phenomenology: Steps to measure entanglement at colliders

Conclusion: The study of entanglement in particle physics is gathering pace

- Quantum entanglement is measured at the highest energy we can achieve.
- Inspire both quantum community and high-energy community.

Outlook

- Measurement Bell inequality and other quantum observables at LHC.
- Other channels:
 - Spin space: WW, ZZ, τ^{\pm} , even gg [YG, XL, FY and HXZ, 2406.05880]
 - Flavor space: $\bar{B}_0\bar{B}_0$, $K_0\bar{K}_0\cdots$ See the talk of Yu Shi
- Novel quantum experiments?

High-energy colliders are "quantum information laboratories"!

