

In collaboration with Qing-Hong Cao, Shuailiang Ge and Yandong Liu

arXiv: 2407.xxxx

2024.07.10 通化

junchenwang@stu.pku.edu.cn

Jun-Chen Wang

Jun-Chen Wang

Introduction

- Studies on Berry phase in the axion physics **Cosmological birefringence** Hoseini et al. 2019, PLB Jain et al. 2021, JCAP **Axion-photon mixing** Capolupo et al. 2015 Formal theory research
- We study the Berry phase in the axion physics and show that the equivalence of Berry phase induced by axion-fermion and axion-photon interactions the connection between the Berry phase and generalized
 - symmetry

Baggio et al. 2017, JHEP

Berry Phase

$$i\frac{\partial}{\partial t} |\psi\rangle = H(t) |\psi\rangle \qquad \left\{ \begin{array}{c} \xi_{\rm dy} \\ \xi_{\rm dy} \end{array} \right\}$$

Fime dependent system
$$\left\{ \begin{array}{c} \xi_{\rm by} \\ \xi_{\rm Be} \end{array} \right\}$$

junchenwang@stu.pku.edu.cn

Can axions induce the Berry phase?

Jun-Chen Wang

The Lagrangian in axion physics

$$\mathscr{L}_{a\gamma} = \frac{1}{4} \frac{g_{\gamma}}{f_a} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

	a	$F^{\mu u} ilde{F}_{\mu u}$
CP Parity	-1	-1
T Parity	-1	-1

For a non-degenerate quantum system with time reversal symmetry, the Berry phase must be zero.

Baggio et al. 2017, JHEP

Time reversal symmetry

No Berry phase

Jun-Chen Wang

$H(t) = \mathbf{V}(t) \cdot \mathbf{j}$

Scenario I: Take the axion-fermion system as an example

Scenario II: Take the axion-photon system as an example

Scenario I: vector's direction changes with time

Scenario II: vector's magnitude changes with time

- **Two scenarios are applicable for both systems**

Scenario One: Direction

$$\frac{gq}{m_f^2} (\mathbf{E} \times \mathbf{p}) \cdot \sigma + (\gamma - 1) \frac{\mathbf{a} \times \mathbf{v}}{v^2} \cdot \sigma$$

Proton Ring Experiment Graham et al. 2017, PRD

$$\sim \mathcal{O}\left(\frac{g_f^2/f_a^2}{|B-\omega|}\right) \sim 10^{-36}$$

Very small val

Scenario One: Direction

Q: Why the Berry phase is so small

A: Very large Standard Model background

Resonance Condition

$$GB + vE\left(G - \frac{1}{\gamma^2 - 1}\right) =$$
$$\gamma = \frac{1}{1 - v^2} \quad G = \frac{g - 2}{2}$$

Spin Precession Experiment

junchenwang@stu.pku.edu.cn

Photon Ring Experiment

The resonance condition can be realized by the birefringent material.

$$\alpha_{\rm photon} = 1.63 \times 10^{-9} \text{ rad } \times$$

$$\left(\frac{g_{\gamma}/f_a}{10^{-12} \text{ GeV}^{-1}}\right) \left(\frac{\sqrt{\rho_{\text{DM}}}}{\sqrt{0.3 \text{ GeV} \cdot \text{cm}}}\right)$$

It is promising to probe the axion.

Scenario Two: Magnitude

- Focus on the situation where η_a changes with time
- Assume photons propagate along the z direction

$$H_{\gamma} = \frac{g_{\gamma}}{2f_a} \eta_a(t) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \longrightarrow U_{\gamma}(t) = \begin{pmatrix} \cos\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) & -\sin\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) \\ \sin\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) & \cos\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) \end{pmatrix}$$

where $\Delta a(t) = \tilde{a}(t) + At$

$$\xi_{\text{Berry}} = m \frac{g_{\gamma}}{2f_a} \left[\tilde{a}(T) - \tilde{a}(0) \right], \ m = \pm 1$$

junchenwang@stu.pku.edu.cn

which means the Berry phase must be zero for a closed loop.

Scenario Two: Magnitude

Quantization of the axion: shift symmetry

 $\tilde{a}(t+T) = \tilde{a}(t) + 2\pi N_w f_a$ $a \sim a + 2\pi f_a$ $\xi_{\text{Berry}} = m \frac{g_{\gamma}}{2f_a} \left[\tilde{a}(T) - \tilde{a}(0) \right]$ $\xi_{\text{Berry}} = m\pi g_{\gamma} N_w, \ m = \pm 1$ Winding number The non-zero winding number can be realized by the axion string, axion domain wall, etc.

Choi et al. 2024, PRL

Jain et al. 2021, JCAP

Jun-Chen Wang

Application of The Berry Phase

- Berry phase is dependent only on g_{γ} , not f_a

$$\xi_{\text{Berry}} = m\pi g_{\gamma} N_{w}, \ m = \pm 1$$
$$g_{\gamma} = \frac{\alpha}{2\pi} \left(\frac{E}{N} - 1.92\right)$$

junchenwang@stu.pku.edu.cn

• g_{γ} is related to the generalized symmetry Choi et al. 2024, PRL

Berry phase measurement

Generalized symmetry research

Application of The Berry Phase

Conclusion

- axion physics.
- We find the unified form of axion-fermion and axion-photon Hamiltonian and research two different scenarios
- The photon ring experiment is a new way to probe the axion.
- The birefringence can be used to measure the Berry phase which can help us understand the topology property (generalized symmetry) of the axion.

We perform a systematical study on the Berry phase in the

Thank You!

Jun-Chen Wang

