

马海龙 (高能所)

第四届中国格点量子色动力学会议,湖南省长沙市, 2024年10月11-15日

■ 物理动机

■ 数据样本

■ 粲介子纯轻衰变研究

■ 粲介子半轻衰变研究

- 总结

(Semi)leptonic D decays

探讨夸克和轻子相互作用的理想桥梁, 检验标准模型的理想探针之一

$$T(D^+_{(s)} o \ell^+
u_\ell) = rac{G_F^2 f_{D^+_{(s)}}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D^+_{(s)}} \left(1 - rac{m_\ell^2}{m_{D^+_{(s)}}^2}
ight)^2 \, .$$

- 衰变常数、半轻衰变形状因子
- CKM矩阵元|V_{cs}|、|V_{cd}|
- 分支比之比B_{μ/e}、B_{τ/μ}
 稀有含轻衰变

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

- →精密刻度格点QCD等计算
- →在更高精度下检验CKM矩阵的幺正性
- →精确检验轻子普适性
- →寻找超出标准模型的新物理效应

BESIII之前|V_{cs(d)}|的测量状态

 V_{ud} , V_{us} and V_{cb} are the best determined due to flavor symmetries: I, SU(3), HQS. Charm ($V_{cd} \& V_{cs}$) and rest of the beauty sector (V_{ub} , V_{td} , V_{ts}) are poorly determined. Theoretical errors on hadronic matrix element dominate.

北京正负电子对接机II (BEPCII)

北京谱仪III (BESIII)

NIMA614(2010)345

Excellent resolution, particle identification, and large coverage for neutral and charged particles

BESII国际合作组

Europe (18)

Germany(6): Bochum University, GSI Darmstadt, Helmholtz Institute Mainz, Johannes Gutenberg University of Mainz, Universitaet Giessen, University of Münster Italy(3): Ferrara University, INFN, University of Turin, Netherlands(1):KVI/University of Groningen Russia(2): Budker Institute of Nuclear Physics, Dubna JINR Sweden(1): Uppsala University Turkey (1): Turkish Accelerator Center Particle Factory Group UK(3): University of Manchester, University of Oxford, University of Bristol **Poland(1):** National Centre for Nuclear Research Institute of Physics and Technology

OPLE'S REPUBLIC OF CHENA Pakistan(2) **COMSATS** Institute of Information Technology University of the Punjab

India(1) Indian Institute of Technology madras

IT NORTH MACE

27 RUHIND

Thailand(1) Suranaree University of Technology

Mongolia(1)

Korea(1)

Chung-Ang University

China (54

Beihang University, Central China Normal University, Central South University, China Center of Advanced Science and Technology, China University of Geosciences, Fudan University, Guangxi Normal University, Guangxi University, Hangzhou Normal University, Hebei University, Henan University, Henan Normal University, Henan University of Science and Technology, Henan University of Technology, Huangshan College, Hunan University, Hunan Normal University, Inner Mongolia University, Institute of High Energy Physics, Institute of Modern Physics, Jilin University, Lanzhou University, Liaoning Normal University, Liaoning University, Nanjing Normal University, Nanjing University, Nankai University, North China Electric Power University, Peking University, Oufu Normal University, Remnin University of China, Shanxi University, Shanxi Normal University, Sichuan University, Shandong Normal University, Shandong University, Shandong University of Technology, Shanghai Jiao Tong University, Soochow University, South China Normal University, Southeast University, Sun Yat-sen University, Tsinghua University, University of Chinese Academy of Science University of Jinan, University of Science and Technology of China, University of Science and Technology Liaoning, University of South China, Withan University, Xinyang Normal University, Yantai University, Yunnan University, DIVATION OF

Zhejiang University, Zhengzhow University C T L C

ed or

Data samples at BESIII

- 2009: 106M ψ(3686) 225M J/ψ
- 2010: 0.98 fb⁻¹ ψ (3770)
- 2011: 2.93 fb⁻¹ ψ(3770) (**D**⁰⁽⁺⁾, total) 0.48 fb⁻¹@4.01 GeV
- 2012: 0.45B ψ (3686) (total) 1.30B J/ ψ (total)
- 2013: $1.09 \text{ fb}^{-1} @4.23 \text{ GeV} (XYZ\& D_s^+)$ $0.83 \text{ fb}^{-1} @4.26 \text{ GeV}$ $0.54 \text{ fb}^{-1} @4.36 \text{ GeV}$ $10 \times 0.05 \text{ fb}^{-1} XYZ \text{ scan} @3.81-4.42 \text{ GeV}$
- 2014: 1.03 fb⁻¹@4.42 GeV 0.11 fb⁻¹@4.47 GeV 0.11 fb⁻¹@4.53 GeV 0.05 fb⁻¹@4.575 GeV 0.57 fb⁻¹@4.60 GeV (XYZ& Λ_c^+) 0.80 fb⁻¹ R scan @3.85-4.59 GeV 2009: 106M ψ (3686)
- 2015: R-scan 2-3 GeV+2.175 GeV

2016: 3.20 fb^{-1} @4.178 GeV (XYZ& D_s^+) 2017: $7 \times 0.50 \text{ fb}^{-1} @ 4.19 - 4.22 \text{ GeV} (XYZ \& D_s^+),$ @4.24-4.27 (XYZ) 2018: More J/ ψ +tuning new RF cavity 2019: 10B J/ ψ (total) $8 \times 0.50 \text{ fb}^{-1} \text{XYZ} \text{ scan} @4.13, 4.16 (XYZ \& D_s^+),$ 4.29-4.44 GeV 2020: 3.8 fb⁻¹ @ 4.61-4.7 GeV (XYZ& Λ_c^+) 2021: 2.0 fb⁻¹ @ 4.74-4.946 GeV 2.7B ψ (3686) (total) **2022:** 0.4 fb⁻¹@3.650 GeV 0.4 fb⁻¹@3.682 GeV 2.9→7.9 fb⁻¹ ψ (3770) ($D^{0(+)}$, total) 2023-2024: 7.9 \rightarrow 20.3 fb⁻¹ ψ (3770) (for $D^{0(+)}$, total) $2 \times 0.42 \text{ fb}^{-1} \psi(3770) \text{ scan}$ 0.14 fb⁻¹ @3.800-3.885 GeV 0.13 fb⁻¹ @3.554 GeV 0.025 fb⁻¹@1.84-2.00 GeV

>50 fb⁻¹ at E_{cm} between 1.84 and 4.95 GeV in 15 year running

近年来开展粲强子研究的实验

The world largest threshold charmed hadrons at BESIII

Produced in pair \rightarrow Double tag method Low background \rightarrow low systematic uncertainties Quantum correlation for $\psi(3770) \rightarrow D^0 \overline{D}^0$ pairs

Yields of Singly Tagged (ST) charmed hadrons

E _{cm} (GeV)	Data taking year	L (fb ⁻¹)	ST D ⁰ yield	ST D ⁺ Yield	ST D ⁺ yield	ST ∕/ _c yield
3.773	2010-11 (→ 2022-24)	2.93 → 20.3	2.7M (~7×)	1.7M (~7×)		
4.009	2011	0.48			13K	
4.13-4.23	2016,2017,2012,2019	7.33			0.8M	
4.6-4.7	2014, 2020	4.5				0.12M

Total yields of various charmed hadrons at BESIII are lower than Belle and LHCb by 2-3 orders. However, BESIII, Belle and LHCb have complimentary advantages in various charm physics 10

Publications of BESIII

BESIII physics

602 papers and 121 in PRL

164 papers and 32 in PRL

粲介子含轻衰变: >50篇文章 (15篇PRL)

粲介子纯轻衰变

Studies of $D^+ \rightarrow l^+ \nu_l$

Studies of $D_s^+ \rightarrow \mu^+ \nu_{\mu}$

3.19 fb⁻¹@4.18 GeV

6.3 fb⁻¹@4.18-4.23GeV PRD104(2021)052009

PRL122(2019)071802 Constrained fit to matched and **BKGI:** real ST D^{*} and D^{*} $\rightarrow \mu^+ \nu_{\mu}$ but wrong $\gamma(\pi^0)$ un-matched transition $\gamma(\pi^0)$ **BKGII:** wrong ST **D** or wrong $\mathbf{D}_{a}^{+} \rightarrow \mu^{+} \mathbf{V}_{\mu}$ 1136±33 with μ Events counter information -0.2 -0.1 0 0.1 0.2 $M_{\rm miss}^2$ (GeV²/c⁴)

$$B[D_s^+ \to \mu^+ v] = (5.49 \pm 0.16 \pm 0.15) \times 10^{-3}$$

 $f_{D_s^+}|V_{cs}| = (246.2 \pm 3.6 \pm 3.5) \text{ MeV}$

Precision~2.1%

2198±55

 ${\rm B}[D_s^+ \to \mu^+ \nu] = (5.35 \pm 0.13 \pm 0.16) \times 10^{-3}$

 $\mathbf{f}_{D_{s}^{+}}|\mathbf{V}_{cs}| = (\mathbf{243}, \mathbf{1} \pm \mathbf{3}, \mathbf{0} \pm \mathbf{3}, \mathbf{7}) \text{ MeV}$

Precision~2.0%

Studies of $D_s^+ \rightarrow \tau^+ \nu_{\tau}$

PRD104(2021)032001

 $D_s^+ \rightarrow \tau^+(\rho^+ v)v$

Precision~3.1%

PRD104(2021)052009

 $D_s^+ \to \tau^+(\pi^+ \nu) \nu$

 $f_{D_s^+}|V_{cs}| = (243.0 \pm 5.8 \pm 4.0) \text{ MeV}$ **Precision~2.9%**

PRL127(2021)171801 $D_{s}^{+} \rightarrow \tau^{+}(e^{+}\nu\nu)\nu$

Precision~1.5%

More measurements of $D_s^+ \rightarrow l^+ \nu_l$

PRD108(2023)092014

JHEP09(2023)124 $D_s^+ \rightarrow \tau^+(\mu^+ \nu \nu) \nu$ 7.33 fb⁻¹ 2281±73

 $\mathsf{B}[D_s^+ \to \mu^+ \nu] = (5.29 \pm 0.11 \pm 0.09) \times 10^{-3} \quad \exists [D_s^+ \to \tau^+ \nu] = (5.44 \pm 0.17 \pm 0.13)\%$

 $|\mathbf{f}_{D_s^+}|\mathbf{V}_{cs}| = (241.8 \pm 2.5 \pm 2.2) \text{ MeV}$

PRD108(2023)112001

MeV $I_{D_s^+}|V_{cs}| = (248.3 \pm 3.9)$

Precision~1.4%

The most precise to date

 $f_{D_s^+}|V_{cs}| = (248.3 \pm 3.9 \pm 3.2) \text{ MeV}$

Precision~2.0%

 $B[D_s^+ \to \tau^+ \nu] = (5.37 \pm 0.17 \pm 0.15)\%$

 $f_{D_s^+}|V_{cs}| = (246.7 \pm 3.9 \pm 3.6) \text{ MeV}$

Precision~2.2%

基于 $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ 研究 D_s^+ 纯轻衰变

		No lepton universality constraint		Lepton u	iniversality constraint
Signal decay	$\bar{\epsilon}_{ m sig}~(\%)$	N _{DT}	B (%)	$N_{\rm DT}^{\rm SM}$	B SM (%)
$ \begin{array}{c} D_s^+ \to \tau_e^+ \nu_\tau \\ D_s^+ \to \tau_\mu^+ \nu_\tau \\ D_s^+ \to \tau_\pi^+ \nu_\tau \\ D_s^+ \to \tau_\rho^+ \nu_\tau \end{array} $	$\begin{array}{c} 7.81 \pm 0.02 \\ 18.57 \pm 0.04 \\ 8.93 \pm 0.02 \\ 6.11 \pm 0.02 \end{array}$	2845 ± 83	$5.60 \pm 0.16 \pm 0.20$	2754 ± 69	$5.39 \pm 0.14 \pm 0.20$
$D_s^+ \to \mu_b^+ \nu_\mu$	94.76 ± 0.20	579 ± 34	$0.491 \pm 0.029 \pm 0.020$	641 ± 16	$0.553 \pm 0.014 \pm 0.021$
$D_s^+ \to \mu_a^+ \nu_\mu$	74.67 ± 0.16	507 ± 26	$0.547 \pm 0.026 \pm 0.016$		

 $D_s^+ \rightarrow \tau_{\pi}^+ \nu_{\tau}$

 $-\mathbf{D}_{s}^{+}\rightarrow \tau_{\rho}^{+}\nu_{\tau}$

0.0

• Data

Best fit

Signal

D_s⁺ \rightarrow K⁰ π ⁺

 Data Best fit

 $\begin{array}{ccc} 0.2 & 0.4 & 0.\\ M_{\rm miss}^2 & ({\rm GeV}^2/c^4) \end{array}$

Signal

 $D_{e}^{+} \rightarrow \eta \pi^{+} \pi^{0}$ $\mathbf{D}_{c}^{+}\rightarrow\mathbf{K}^{0}\pi^{+}\pi^{0}$

Other backgroun

0.6

0.8

 $D_s^+ \rightarrow \mu^+ \nu_1$

..... Other background

基于4.23-4.7 GeV 10.6 fb⁻¹数据,挖掘现有及未 来BESIII数据潜力

Comparisons of f_{D^+} and $f_{D_s^+}$

	f _{⊳⁺} (Me	eV)	
0	100	200	
BESIII,μν	arXiv:2010.07626,20.3fb ⁻¹	211.5±2.3±1.4	- σ=1.2%
BESIII, TV	PRL123(2019)211802,2.9ft	⁻¹ 224.7±22.5±11.3+	- + +
BESIII,μν	PRD89(2014)051104,2.9fb	¹ 204.2±5.3±1.7 ⊢⊷	
CLEO,μν	PRD78(2008)052003	207.2±8.7±2.5 ⊷•	-1
HFLAV21	PRD107(2023)052008	205.1±4.4 ⊢⊶	
FMILC(2+1+	1) LAT2012(2012)159	209.2±3.0±3.6 ⊩	H
FMILC(2+1+	1) LATTICE2013(2014)405	212.3±0.3±1.0	•
ETM(2+1+1)	LATTICE2013(2014)314	202.0±8	
ETM(2+1+1)	PRD91(2015)054507	207.4±3.8 ⊦•	•
FMILC(2+1+	1) PRD90(2014)074509	212.6±0.4	
FMILC(2+1+	1) PRD98(2018)074512	212.7±0.6	
FLAG21(2+1-	+1)EPJC82(2022)869	212.1±0.7	•

ETM(2+1+1) FMILC(2+1+1) FLAG21(2+1+1	PRD91(2015)054507 PRD98(2018)074512) EPJC82(2022)869	247.2±4.1 → 249.9±0.4 249.9±0.5
HFLAV21 CLEO CLEO	PRD107(2023)052008 PRD79(2009)052002, $\tau_{e}v$ PRD80(2009)112004, $\tau_{p}v$	252.2±2.5 ⊷ 251.8±11.2±5.3 ⊷ • − • 257.0±13.3±5.0 • − • − •
BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹ BESIII 7.33 fb ⁻¹ BESIII 10.6 fb ⁻¹	$\begin{array}{l} PRD82(2010)091103, \tau_{e,\muv} \\ JHEP09(2013)139, \tau_{e,\mu,\piv} \\ PRD104(2021)052009, \tau_{\piv} \\ PRD104(2021)032001, \tau_{pv} \\ PRL127(2021)171801, \tau_{ev} \\ PRD108(2023)092014, \tau_{\piv} \\ JHEP09(2023)124, \tau_{\muv} \\ PRD110,052002, \tau v, D_s^{+D_s^{-}} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BESIII 0.482 fb ⁻ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹ BESIII 10.6 fb ⁻¹	¹ PRD94(2016)072004, μν PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRL122(2019)071802, μν PRD104(2021)052009, μν PRD108(2023)112001, μν PRD110,052002, μν, D _s ⁺⁺ D _s	245.5±17.8±5.4
BESIII Combine BESIII Combine	ed τν ed τν + μν	253.93±1.54±1.82 252.08±1.34±1.82 σ=0.9%
0	100 f _{D₅} ⁺ (MeV	200

First experimental study of $D_s^{*+} \rightarrow e^+ \nu_e$

PRL131 (2023) 141802

7.33 fb⁻¹@4.13-4.23 GeV

$$\mathcal{B}(D_s^{*+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat}}} \pm 0.2_{\text{syst}}) \times 10^{-5}$$

$$\begin{split} \Gamma(D_s^{*+} \to \ell^+ \nu_\ell) &= \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^{*+}}^2 m_{D_s^{*+}}^3 \left(1 - \frac{m_{\ell^+}^2}{m_{D_s^{*+}}^2}\right)^2 \\ &\times \left(1 + \frac{m_{\ell^+}^2}{2m_{D_s^{*+}}^2}\right), \end{split}$$

联合格点QCD计算的 D_s^{*+} 总宽度, 首次抽取 D_s^{*+} 衰变常数

→ 为约束格点QCD计算的D_s^{*+}衰变常 数首次提供实验依据

→ 对D_s^{*+}宽度上限的约束改进3个量级

Search for $D^{*+} \rightarrow l^+ \nu_l$

分支比上限比标准模型预期高3个量级

■
$$D \rightarrow Pe^+\nu_e$$

■ $D \rightarrow Ve^+\nu_e$
■ $D \rightarrow Se^+\nu_e$
■ $D \rightarrow Ae^+\nu_e$

微分跃迁率测量
$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2 \longrightarrow \mathbf{f}_+^{D \to P}(\mathbf{0}) |V_{cs(d)}|$$

Form factor parameterizations:

- Single pole form
$$f_+(q^2) = \frac{f_+(0)}{1 - \frac{q^2}{M_{\text{pole}}^2}}$$

Modified pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - \frac{q^{2}}{M_{\text{pole}}^{2}})(1 - \alpha \frac{q^{2}}{M_{\text{pole}}^{2}})}$$

$$- \text{ISGW2} \qquad f_{+}(q^{2}) = f_{+}(q_{\max}^{2}) \left(1 + \frac{r_{\text{ISGW2}}^{2}}{12}(q_{\max}^{2} - q^{2})\right)^{-2}$$

- Series expansion
$$f_+(t) = \frac{1}{P(t)\Phi(t,t_0)}a_0(t_0)\left(1+\sum_{k=1}^{\infty}r_k(t_0)[z(t,t_0)]^k\right)$$

PRD96(2017)012002

PRD92(2015)112008

PRD92(2015)072012

Recent results of $D^{0(+)} \rightarrow \overline{K}\ell^+\nu_\ell$ ($\ell = e \text{ or } \mu$)

7.9 fb⁻¹@3.773 GeV

arXiv:2408.09087

Decay	N _{DT}	$\bar{\varepsilon}_{sig}$ (%)	\mathcal{B}_{sig} (%)
$D^0 \rightarrow K^- e^+ \nu_e$	190605 ± 471	68.79 ± 0.03	$3.509 \pm 0.009 \pm 0.013$
$D^0 \to K^- \mu^+ \nu_\mu$	147596 ± 488	54.85 ± 0.03	$3.408 \pm 0.011 \pm 0.013$
$D^+ \to \bar{K}^0 e^+ \nu_e$	57846 ± 256	15.74 ± 0.01	$8.856 \pm 0.039 \pm 0.078$
$D^+ \to \bar{K}^0 \mu^+ \nu_\mu$	47229 ± 248	13.14 ± 0.01	$8.661 \pm 0.046 \pm 0.080$

Recent results of $D^+ \rightarrow \eta' \ell^+ \nu_\ell$ ($\ell = e \text{ or } \mu$)

20.3 fb⁻¹@3.773 GeV,最新结果, submitted to arXiv, no No. yet

Comparisons of $f_+^{D \to K}(0)$ and $f_+^{D \to \pi}(0)$

Experimental precision of $f_+^{D \to K}(0)$ is comparable to the latest LQCD precision

	$\mathbf{f}_{+}^{\mathbf{D} \rightarrow 2}$	^π (0)		
	-0.5 0	0.5	5	
BESIII	Expected 20 ID ⁻¹ , $D^* \rightarrow \pi^* e^+ V_e$	0.637±0.003±0.004		L
DESIII	Francisco 20 ft-1 D^0 =	0.637±0.008±0.004	Ī	
BESHI	PKD96,012002,D $\rightarrow \pi^{0}e^{+}V_{e}$	0.622±0.012±0.003	1	1.6%
BESH	PLB597,39	0.730±0.140±0.060	H • H	
Belle	PRL97,061804	0.624±0.020±0.003	1	
CLEO-c	PRD80,032005	$0.629 \pm 0.022 \pm 0.007$	+	
CLEO-c	PRD77,112005	0.666±0.019±0.004		
LQCD	PRD107(2023)094516	0.6300±0.0051	•	_4.4 →0.8%
LFQM	JPG39,025005	0.66 ± 0.01	м	
CCQM	PRD98,114031	0.63±0.09	⊢ <mark>∔</mark> ⊣ ,	
CQM	PRD62,014006	0.69	•	
RQM	PRD101,013004	0.64	•	
QM	ZPC34,103	0.692	•	
LQCD	PRL94,011601	0.640±0.030±0.060	L1 1 11	
LQCD	PRD84,114505	0.666±0.020±0.021	H+H	
LQCD	PRD96,054514	0.612±0.035	⊷ •	
LCSR	PRD62,114002	0.65±0.11		
LCSR	PRD67,014024	0.67±0.19 ⊢		
LCSR	LJMPA21,6125	0.635+0.057		-
				Π

Experimental precision of $f_{+}^{D \to \pi}(\mathbf{0})$ is still dominated by statistical uncertainties

Comparisons of |V_{cs}| and |V_{cd}|

CKMFitter	PDG	0.97349±0.00016	'
HFLAV21	PRD107,052008	0.9701±0.0081	-
CLEO	PRD80,032005, Ke⁺v _e	0.9648±0.0090±0.078	
BESIII	PRD92,112008, K ⁰ _L e ⁺ V _e	0.977±0.008±0.016	-
BESIII	PRD96,012002,	0.946±0.005±0.016	-
BESIII	PRD92,072012, K [*] e ⁺ V _e	0.9624±0.0034±0.0062	
BESIII	PRL122,011804, Κ μ+ν _μ	0.9572±0.0050±0.0057	-
BESIII	arXiv:2408.09087, ⊼l ⁺v _i	0.9611±0.0015±0.0043	
BESIII	PRL122,121801 , η e ⁺ν _e	0.900±0.020±0.057	H-1
BESIII	PRD108,092002 , ηe ⁺ ν _e	0.913±0.014±0.057	H-4-1
BESIII	PRL132,091802 , $\eta\mu^*\nu_{\mu}$	0.911±0.020±0.057	H
BESIII	PRL122,121801 , η'e⁺ν _e	0.903±0.060±0.077	<u>н</u>
BESIII	PRD108,092002 , η'e⁺v _e	0.941±0.044±0.081	
BESIII	PRL132,091802 , η'μ ⁺ ν _μ	0.907±0.067±0.078	
-	1 V _{cs}	0	1

CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081	•
CLEO	PRD79(2009)052002, τ _e ν	0.981±0.044±0.021	H
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	$1.001 {\pm} 0.052 {\pm} 0.019$	H+H
CLEO	PRD79(2009)052001 , $\tau_{\pi}v$	$1.079 \pm 0.068 \pm 0.016$	H
BaBar	PRD82(2010)091103 , $\tau_{e,\mu}v$	0.953±0.033±0.047 H	H ar lı
Belle	JHEP09 (2013)139, $\tau_{e,\mu,\pi}v$	$1.017 \pm 0.019 \pm 0.028$	H=H
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , $\tau_{\pi}v$	0.972±0.023±0.016	H H
BESIII 6.32 fb ⁻¹	PRD104(2021)032001 , τ _ρ ν	0.980±0.023±0.019	H
BESIII 6.32 fb ⁻¹	PRL127(2021)171801 , $\tau_e v$	$0.978 {\pm} 0.009 {\pm} 0.012$	
BESIII 7.33 fb ⁻¹	PRD108 (2023)092014, $\tau_{\pi}v$	0.993±0.016±0.013	•
BESIII 7.33 fb ⁻¹	JHEP09(2023)124 , τ _μ ν	0.987±0.016±0.014	+
BESIII 10.6 fb ^{.1}	PRD110 (2024)052002, τv , $D_s^{*+}D_s^{*-}$	$1.011 \pm 0.014 \pm 0.018$	•
CLEO	PRD79(2009)052001 , μν	1.000±0.040±0.016	-
BaBar	PRD82(2010)091103 , μν	1.032±0.033±0.029	H+H
Belle	JHEP09(2013)139 , μν	0.969±0.026±0.019	H
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020 ⊢	
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014	+
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, μν	0.973±0.012±0.015	
BESHI 7.33 fb ⁻¹	PRD108(2023)112001 , μν	0.968±0.010±0.009	
BESIII 10.6 fb ⁻¹	PRD110 (2024)052002, $\mu\nu$, $D_s^{*+}D_s^{*-}$	0.986±0.023±0.014	•
BESIII Combined	τν	0.9892±0.0060±0.0071	
BESIII Combined	τν + μν	0.9820±0.0052±0.0071	• 0.9%
	-1 0		1

LFU tests in (semi)leptonic D decays before BESIII

Tension in **B** physics

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} l \nu_{l})}$$

Tension in *D* **physics**

$$\mathsf{B}^{\mathsf{PDG18}}[D^0 \to \pi^- \mu^+ \nu] = (0.237 \pm 0.024)\%$$

 $\frac{\Gamma^{\text{PDG18}}[D^0 \to \pi^- \mu^+ v]}{\Gamma^{\text{PDG18}}[D^0 \to \pi^- e^+ v]} = \begin{array}{l} 0.82 \pm 0.08 \\ \textbf{(2.1\sigma)} \end{array} \qquad \begin{array}{l} \text{SM prediction:} \\ \textbf{0.985} \end{array}$

The knowledge of semimuonoic charm meson decays is very poor

	D^0		D^0 D^+		D_s^+	
	<i>K</i> ⁻	4% ^{Belle}	\overline{K}^0	7% ^{FOCUS}	η	NA
$a \rightarrow al^{+}a$	<i>K</i> *-	13% ^{focus}	\overline{K}^{*0}	3% ^{CLEOc}	η'	NA
$C \rightarrow S C V$					φ	NA
					f ₀	NA
	π-	10% ^{Belle}	π^0	NA	<i>K</i> ⁰	NA
	ρ-	NA	ρ 0	17% ^{FOCUS}	<i>K</i> * ⁰	NA
$c \rightarrow a l^{+} v$			ω	NA		
			η	NA		
			η'	NA		

Tests of LFU in leptonic charm decays

PRL123(2019)211802

$$\begin{split} & \mathsf{B}^{\mathsf{BESIII}}[D^+ \to \tau^+ v] = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3} \\ & \mathsf{B}^{\mathsf{PDG}}[D^+ \to \mu^+ v] = (3.74 \pm 0.17) \times 10^{-4} \end{split}$$

$$R_{D} = \frac{B[D^{+} \to \tau^{+}\nu]}{B[D^{+} \to \mu^{+}\nu]} = 3.21 \pm 0.64 \pm 0.43$$

SM prediction: 2.67

 PRD108(2023)112001
 $D_s^+ \rightarrow \mu^+ v$

 PRL127(2021)171801,
 $D_s^+ \rightarrow \tau^+ (e^+ v v) v$,

 PRD108(2023)092014,
 $D_s^+ \rightarrow \tau^+ (\pi^+ v) v$,

 PRD104(2021)032001,
 $D_s^+ \rightarrow \tau^+ (\rho^+ v) v$,

 JHEP09(2023)124
 $D_s^+ \rightarrow \tau^+ (\mu^+ v v) v$

 $B^{\text{BESIII}}[D_s^+ \to \mu^+ \nu] = (5.294 \pm 0.108 \pm 0.085) \times 10^{-3}$

 $\mathrm{B}^{\mathrm{BESIII}}[D_s^+ \to \tau^+ \nu] = (5.32 \pm 0.07 \pm 0.07)\%$

$$R_{Ds} = \frac{B[D_s^+ \to \tau^+ \nu]}{B[D_s^+ \to \mu^+ \nu]} = 10.05 \pm 0.35$$

SM prediction: 9.75

Tests of LFU in semileptonic charm decays

PRL121(2018)171803

$$R_{D^{0}K^{*-}} = \frac{\Gamma[D^{0} \to K^{*-}\mu^{+}\nu]}{\Gamma[D^{0} \to K^{*-}e^{+}\nu]} = 0.96 \pm 0.08$$

Summary of LFU tests at BESIII

PRD97(2018)012006 →

$D_s^+ \rightarrow \eta^{(\prime)} \mu^+ \nu_{\mu}$ PRL132(2024)091802

$$R_{D_{s}^{+}\eta} = \frac{\Gamma[D_{s}^{+} \to \eta \mu^{+} \nu]}{\Gamma[D_{s}^{+} \to \eta e^{+} \nu]} = 0.984 \pm 0.032$$
$$\Gamma[D_{s}^{+} \to \eta' \mu^{+} \nu]$$

$$R_{D_S^+\eta'} = \frac{\Gamma[D_S \rightarrow \eta \ \mu \ \nu]}{\Gamma[D_S^+ \rightarrow \eta' e^+ \nu]} = 0.989 \pm 0.089$$

 $D_s^+ \rightarrow \phi \mu^+ \nu_\mu$ JHEP12(2023)072

$$R_{D_s^+\phi} = \frac{\Gamma[D_s^+ \to \phi\mu^+\nu]}{\Gamma[D_s^+ \to \phi e^+\nu]} = 0.94 \pm 0.08$$

Eleven decays are observed for the first time, all other decays are measured with better precision

			BF ratios	References
		$D^0 \to K^-$	$0.971 \pm 0.004 \pm 0.005$	arXiv:2408.090987
		$D^0 \rightarrow \pi^-$	$0.922 \pm 0.030 \pm 0.022$	PRL121(2018)171803
		$D^0 \rightarrow \rho^-$	0.90 ± 0.11	PRD104(2021)L091003
		$D^+ \to \overline{K}{}^0$	$0.978 \pm 0.007 \pm 0.012$	arXiv:2408.090987
		$D^+ \rightarrow \pi^0$	$0.964 \pm 0.037 \pm 0.026$	PRL121(2018)171803
		$D^+ \rightarrow \eta$	0.91 ± 0.13	PRL124(2020)231801
	µ/e	$D^+ \rightarrow \eta'$	$1.07 \pm 0.19 \pm 0.03$	Submitted, no arXiv No.
		$D^0 \to K^{*-}$	0.96 ± 0.08	arXiv:2403.12927
Ne		$D^+ \rightarrow \omega$	1.05 ± 0.14	PRD101(2020)072005
NO		$D^+ \to f_0$	1.14 ± 0.28	arXiv:2401.13225
areater		$D^+ \to \rho^0$	0.88 ± 0.10	arXiv:2401.13225
than 1.7	σ !	$D_s^+ \rightarrow \eta$	$0.984 \pm 0.028 \pm 0.016$	
is found		$D_s^+ \rightarrow \eta'$	$0.989 \pm 0.082 \pm 0.034$	PRL152(2024)051602
		$D_s^+ \rightarrow \phi$	0.94 ± 0.08	JHEP12(2023)072
		$\Lambda_c^+\to\Lambda$	$0.98 \pm 0.05 \pm 0.03$	PRD108(2023)L031105
		$D^+ \rightarrow t^+ \nu$	3.02 ± 0.68	BESIII arXiv
	τ/μ	$D_s^+ \to t^+ \nu$	10.05 ± 0.35	PRL127(2021)171801

$D \to Ae^+ v_e$ 半轻衰变的研究

Helps to test various theoretical calculations which are sensitive to K_1 mixing angle

 $D^0 \rightarrow K_1(1270)^- e^+ \nu_e$ PRL127(2021)131801

 $B_{D^0 \to K_1(1270)^- e^+ \nu_e} = (1.09 \pm 0.13 \pm 0.13 \pm 0.12) \times 10^{-3}$

New window to explore the property and nature of K_1 and K_1 mixing angle

Combined analysis of $D \to \overline{K}_1 e^+ v$ and $B \to \gamma \overline{K}_1$ helps to constrain new physics effect in the studies of photon polarization in $b \to s\gamma$ process

Wei Wang et al. PRL125(2020)051802

Observation of $D \rightarrow Ae^+ v_e$

arXiv:2407.20551

 $\hat{\mathcal{B}}(D^{0} \to b_{1}(1235)^{-}e^{+}\nu_{e}) \times \tilde{\mathcal{B}}(b_{1}(1235)^{-} \to \omega\pi^{-}) = (0.72 \pm 0.18^{+0.06}_{-0.08}) \times 10^{-4}$ $\hat{\mathcal{B}}(D^{+} \to b_{1}(1235)^{0}e^{+}\nu_{e}) \times \tilde{\mathcal{B}}(b_{1}(1235)^{0} \to \omega\pi^{0}) = (1.16 \pm 0.44 \pm 0.16) \times 10^{-4}$ $\hat{\mathbf{z}} = \mathbf{z} + \mathbf{z} +$

$$\frac{\Gamma(D^0 \to b_1^- e^+ \nu_e)}{2\Gamma(D^+ \to b_1^0 e^+ \nu_e)} = 0.78 \pm 0.19^{+0.04}_{-0.05}$$

$D \rightarrow KKe^+ v_e$ 半轻衰变的寻找

PRL121(2018)081802

BFs	$a_0(980)[\to \pi \eta] e^+ \nu_e $ [7] (×10 ⁻⁴)	$a_0(980)[\to K_S^0 K^-] e^+ \nu_e$ (×10 ⁻⁵)	$\begin{array}{c} a_0(980) [\to K^0_S K^0_S] e^+ \nu_e \\ (\times 10^{-5}) \end{array}$	$a_0(980)[\rightarrow K^+K^-]e^+\nu_e$ (×10 ⁻⁵)
D^0	$1.33^{+0.33}_{-0.29}\pm0.09$	$1.14^{+0.28}_{-0.24}\pm0.07$		
D^+	$1.66^{+0.81}_{-0.66}\pm0.11$		$0.71^{+0.34}_{-0.28}\pm0.05$	$2.86^{+1.39}_{-1.13}\pm0.19$

PRD109(2024)070032

$D \rightarrow K\eta e^+ \nu_e$ 和 $D \rightarrow \eta \eta e^+ \nu_e$ 的寻找

■ 基于前期数据, BESIII粲介子含轻衰变的研究取得了一系列重要成果。

- BESIII上粲介子衰变常数、形状因子、|V_{cs}|和|V_{cd}|测量精度达到(0.3-1)%。
- 基于最新的、20.3 fb⁻¹@3.773 GeV数据,第一批粲介子D⁰⁽⁺⁾重要的物理成果 已于本周发布,更多结果将随后陆续推出。

Backup slides

Single-tag charmed hadrons at BESIII

Invariant Mass (GeV/c²)

粲介子单举半轻衰变 $D_s^+ \rightarrow v_e eX$

PRD104(2021)012003

 $B_{D_s^+ \to v_e eX} = (6.30 \pm 0.13 \pm 0.10)%$ 与此前最好精度的CLEO结果比,统计误差改进3倍,系统误差改进1.5倍

 $\Gamma_{D_s^+ \to v_e e X} / \Gamma_{D^0 \to v_e e X} = 0.790 \pm 0.016 \pm 0.020$ 与理论预期0.813 [J. L. Rosner PRD83(2011)034025]一致

已知遍举电子半轻衰变道的分 	下支比[PDG2020]
$D_s^+ \to \phi e^+ \nu_e$	$(2.37 \pm 0.11)\%$
$D_s^+ \to \eta e^+ \nu_e$	$(2.32 \pm 0.08)\%$
$D_s^+ \to \eta' e^+ \nu_e$	$(0.80 \pm 0.07)\%$
$D_s^+ \to K^0 e^+ \nu_e$	$(0.34 \pm 0.04)\%$
$D_s^+ \rightarrow K^*(892)^0 e^+ \nu_e$	$(0.21 \pm 0.03)\%$
$D_s^+ \to f_0(980) e^+ \nu_e, f_0(980) \to \pi \pi$	$(0.30 \pm 0.05)\%$
Sum of semielectronic modes	$(6.34 \pm 0.17)\%$
$\mathcal{B}(D_s^+ \to X e^+ \nu_e)$	$(6.52 \pm 0.42)\%$
$D_s^+ \to \tau^+ \nu_\tau \to e^+ \bar{\nu}_\tau \nu_e \nu_\tau$	$(0.96 \pm 0.04)\%$

单举和遍举电子半轻衰变分支比之差: $\Delta B = (-0.04 \pm 0.23)\%$ 表明没有更多 D_s^+ 遍举电子半轻衰变

$D \to Ae^+ v_e$ 半轻衰变的研究

arXiv:2403.19091

基于 $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ 的 D_s^+ 半轻衰变的研究

基于4.23-4.7 GeV 10.6 fb⁻¹数据,挖掘现有及未来BESIII数据潜力

arXiv:2406.01332, accepted by PRD

Decay	$\epsilon_{ m sig}$ (%)	$N_{\rm DT}$	\mathcal{B} $(\%)$
$D_s^+ \to \eta_{\gamma\gamma} e^+ \nu_e$	50.78 ± 0.12	716.2 ± 33.8	$2.35 \pm 0.11 \pm 0.10$
$D_s^+ \to \eta_{\pi^+\pi^-\pi^0} e^+ \nu_e$	20.42 ± 0.08	710.2 ± 55.0	$2.55 \pm 0.11 \pm 0.10$
$D_s^+ \to \eta'_{\pi^+\pi^-\eta} e^+ \nu_e$	22.35 ± 0.07	1337 ± 145	$0.82 \pm 0.00 \pm 0.04$
$D_s^+ \to \eta'_{\pi^+\pi^-\gamma} e^+ \nu_e$	32.48 ± 0.09	100.7 ± 14.0	0.02 ± 0.03 ± 0.04
$D_s^+ \to \phi_{K^+K^-} e^+ \nu_e$	25.48 ± 0.07	350.2 ± 24.5	$2.21 \pm 0.16 \pm 0.11$
$D_s^+ \to f_{0_{\pi^+\pi^-}} e^+ \nu_e$	46.24 ± 0.11	91.0 ± 14.1	$0.15 \pm 0.02 \pm 0.01$
$D_s^+ \to K^0 e^+ \nu_e$	46.21 ± 0.11	50.5 ± 8.4	$0.24 \pm 0.04 \pm 0.01$
$D_s^+ \to K^{0\star} e^+ \nu_e$	41.78 ± 0.10	65.4 ± 10.9	$0.19 \pm 0.03 \pm 0.01$

СОМ	PRD62(2000)014006	2.48	· • · ·		
RQM	PRD101(2020)013004	2.37	•		
(UA(I)	PRD71(2005)014020	1.7			
(^{UA} (II)	PRD71(2005)014020	2.5	•		
LCSR	JPG38(2011)095001	3.15±0.97	_ ⊢_ ●		
LFQM(I)	PRD80(2013)015022	2.42	•		
LFQM(II)	PRD80(2013)015022	2.25	•		
LCSR	PRD88(2013)034023	2.00±0.32	<mark>-</mark>		
QM	PRD98(2018)114031	2.24	•		
LCSR	EPJC82(2022)12	2.35±0.37	⊢⊷		
$CLEO(D_{J}^{*}D_{s})$	PRD92(2015)012009	2.28±0.14±0.19	HeH		
3ESIII(D _s D _s)	PRD94(2016)112003	2.30±0.31±0.08	H <mark>a</mark> H		
BESIII(D [*] D _s)	PRL122(2019)121801	2.323±0.063±0.063	•		
BESIII(D [*] D _s)	PRD108(2023)092003	2.251±0.039±0.051	•		
3ESIII(D [*] D [*] s)	this work 10.64 fb ⁻¹	2.35±0.11±0.09	.		
	-	0			
	-5	U			
$B(D^+ \rightarrow \eta e^+ v_a)(\%)$					
s i extern					

<u> </u>					
CQM	PRD62(2000)014006	0.92	• '		
RQM	PRD101(2020)013004	0.87	•		
χ ^{UA} (I)	PRD71(2005)014020	0.74	•		
$\chi^{UA}(II)$	PRD71(2005)014020	0.61	•		
LCSR	JPG38(2011)095001	0.97±0.38	⊢ <mark></mark>		
LFQM(I)	PRD80(2013)015022	0.95	•		
LFQM(II)	PRD80(2013)015022	0.91	•		
LCSR	PRD88(2013)034023	0.75±0.23	⊢		
QM	PRD98(2018)114031	0.83	•		
LCSR	EPJC82(2022)12	0.79±0.13	⊢ <mark>∙</mark> -I		
*					
CLEO(D _s D _s)	PRD92(2015)012009	$0.68 \pm 0.15 \pm 0.06$			
BESIII(D _s D _s)	PRD94(2016)112003	$0.93 \pm 0.30 \pm 0.05$	⊢ <mark></mark> •		
BESIII(D [*] _s D _s)	PRL122(2019)121801	$0.824 {\pm} 0.073 {\pm} 0.027$	He I		
BESIII(D [*] _s D _s)	PRD108(2023)092003	$0.81 {\pm} 0.038 {\pm} 0.024$	H		
BESIII(D [*] _c D [*] _s)	this work 10.64 fb ⁻¹	$0.82 {\pm} 0.09 {\pm} 0.04$			
-0	>1	0	1		
-2	1	0	I		
$\mathbf{B}(\mathbf{D}_{s}^{T} \rightarrow \eta^{e} \mathbf{v}_{e})(\%)$					