Total Gluon Helicity from Lattice without Effective Theory Matching

Jianhui Zhang

香港中文大學(深圳)

The Chinese University of Hong Kong, Shenzhen

Based on JHEP 07, 222 (2024) with Zhuoyi Pang and Fei Yao

第四届中国格点量子色动力学研讨会,长沙,2024.10.12

Spin structure of the proton

Proton is a composite particle with spin 1/2

Jaffe-Manohar sum rule Jaffe and Manohar, NPB 90'

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- Complete decomposition into quark and gluon spin & orbital AM
- Gauge-dependent, but with clear partonic interpretation

Ji sum rule Ji, PRL 97'

$$\frac{1}{2} = J_q + J_g = \frac{1}{2} \Delta \Sigma + L_q + J_g$$

- Frame- and gauge-independent
- Quark and gluon contributions related to the moments of GPDs

Total gluon helicity from experiments

• The total gluon helicity ΔG can be measured by probing the spin-dependent gluon helicity distribution in polarized high-energy scattering experiments

$$\Delta g(x) = \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ix\xi^{-}P^{+}} \langle PS | F_{a}^{+\mu}(\xi^{-}) \mathcal{L}_{ab}(\xi^{-}, 0) \tilde{F}_{b,\mu}^{+}(0) | PS \rangle$$

$$\Delta G = \int dx \Delta g(x)$$

$$0.04 \qquad \text{NEW FIT} \text{ with } \Delta x^{-1} \text{ and } 90\% \text{ C.L. bands}$$

$$0.02 \qquad \text{DSSV} \qquad \text{DSSV} \qquad \text{DSSV} \qquad \text{SWY C.L. region}$$

$$\Delta f = \int dx \Delta g(x)$$

Total gluon helicity from experiments

• The total gluon helicity ΔG can be measured by probing the spin-dependent gluon helicity distribution in polarized high-energy scattering experiments

$$\Delta g(x) = \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ix\xi^{-}P^{+}} \langle PS | F_{a}^{+\mu}(\xi^{-}) \mathcal{L}_{ab}(\xi^{-}, 0) \tilde{F}_{b,\mu}^{+}(0) | PS \rangle$$

$$\Delta G = \int dx \Delta g(x)$$

$$Q^{2} = 10 \text{ GeV}^{2}$$

$$Q^{2} = 10 \text{ GeV}^{2}$$

$$Urrent data$$

$$EIC_{5\times250}$$

$$EIC_{5\times250}$$

$$EIC_{20\times250}$$
all uncertainties for $\Delta \chi^{2}=9$

0.4

0.45

-1

0.3

0.35

Total gluon helicity from theory

• The total gluon helicity ΔG can be measured by probing the spin-dependent gluon helicity distribution in polarized high-energy scattering experiments

$$\Delta g(x) = \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ix\xi^{-}P^{+}} \langle PS | F_{a}^{+\mu}(\xi^{-}) \mathcal{L}_{ab}(\xi^{-}, 0) \tilde{F}_{b,\mu}^{+}(0) | PS \rangle$$

$$\Delta G = \int dx \Delta g(x)$$

- Unlike the moments of quark distributions, ΔG is still nonlocal and cannot be readily calculated on a Euclidean lattice
- It reduces to $\overrightarrow{E}_a \times \overrightarrow{A}_a$ in the lightcone gauge, but the lightcone gauge is difficult to realize on lattice

Total gluon helicity from theory

- We have shown that $\triangle G$ can be obtained by boosting the matrix element of the static operator $\overrightarrow{E}_a \times \overrightarrow{A}_{\perp,a}$ to the infinite momentum frame Ji, JHZ, Zhao, PRL 13'
 - \vec{A}_{\perp} is the transverse part of the gauge field
 - It takes a nonlocal form in general, but reduces to \overrightarrow{A} in the Coulomb gauge
- \bullet ΔG can be calculated by studying the matrix element

$$\Delta \tilde{G} = \langle PS \mid \overrightarrow{E} \times \overrightarrow{A} \mid PS \rangle_{C.G.}$$

in a large momentum nucleon state (subject to a factorization/matching)

total gluon helicity
$$(\vec{E}_a \times \vec{A}_{\perp,a})^z$$

$$| A^+ = 0$$
 Boost to IMF
$$| \nabla \cdot A = 0$$

$$(\vec{E}_a \times \vec{A}_a)^z$$
 Matching
$$(\vec{E}_a \times \vec{A}_a)^z$$

$$(\vec{E}_a \times \vec{A}_a)^z$$

Total gluon helicity from lattice

• Factorization for $\Delta \tilde{G} = \langle PS \mid \overrightarrow{E} \times \overrightarrow{A} \mid PS \rangle_{C.G.}$ Ji, JHZ, Zhao, PRL 13'

$$egin{aligned} \Delta ilde{G} &= extit{C}_{gg} \Delta ilde{G} + extit{C}_{gq} \Delta \Sigma + h.t., \ C_{gg} &= 1 + a_s extit{C}_{A} rac{7}{3} \ln rac{P_z^2}{\mu^2} + ext{fin.}, \quad C_{gq} &= a_s extit{C}_{F} rac{4}{3} \ln rac{P_z^2}{\mu^2} + ext{fin.}. \end{aligned}$$

Lattice calculation Yang et al, PRL 17'

Potential improvements:

- Nonperturbative renormalization
- Perturbative matching rather than an empirical fit
- Resummations
- Control of power corrections

What if ΔG is extracted from the gluon helicity distribution?

Total gluon helicity from lattice

• Factorization for $\Delta \tilde{G} = \langle PS \mid \overrightarrow{E} \times \overrightarrow{A} \mid PS \rangle_{C.G.}$ Ji, JHZ, Zhao, PRL 13'

$$\begin{split} \Delta \tilde{G} &= \textit{C}_{gg} \Delta \textit{G} + \textit{C}_{gq} \Delta \Sigma + \textit{h.t.}, \\ \textit{C}_{gg} &= 1 + \textit{a}_{\textit{s}} \textit{C}_{\textit{A}} \frac{7}{3} \ln \frac{\textit{P}_{\textit{z}}^2}{\mu^2} + \text{fin.}, \quad \textit{C}_{gq} = \textit{a}_{\textit{s}} \textit{C}_{\textit{F}} \frac{4}{3} \ln \frac{\textit{P}_{\textit{z}}^2}{\mu^2} + \text{fin.}. \end{split}$$

Factorization based on the gluon helicity distribution
 Yao, JHZ et al, JHEP 23'

$$\Delta \tilde{g}(x) = \int \frac{dy}{|y|} C_{gg}\left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \Delta g(y) + \int \frac{dy}{|y|} C_{gq}\left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \Delta q(y) + h.t.,$$

$$C_{gg} \supset \delta(1-\frac{x}{y}) + 4a_s C_A \theta(x) \theta(y-x) \left\{ \frac{(2x^2-3xy+2y^2)}{(x-y)y} \left(\ln \frac{\mu^2}{4y^2 P_z^2} - \ln \frac{x(y-x)}{y^2} \right) + fin. \right\}.$$

$$\tilde{h}(z,P_z,1/a) = \langle PS|F^{3\mu}(z)\mathcal{L}(z,0)\tilde{F}_{\mu}^0(0)|PS\rangle,$$

$$\Delta \tilde{g}(x, P_z, 1/a) = \frac{i}{2xP_z} \int \frac{dz}{2\pi} e^{ixzP_z} \, \tilde{h}(z, P_z, 1/a),$$

Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'

Total gluon helicity from lattice

• Factorization for $\Delta \tilde{G} = \langle PS | \overrightarrow{E} \times \overrightarrow{A} | PS \rangle_{C.G.}$ Ji, JHZ, Zhao, PRL 13'

$$\begin{split} \Delta \tilde{G} &= \textit{C}_{gg} \Delta \textit{G} + \textit{C}_{gq} \Delta \Sigma + \textit{h.t.}, \\ \textit{C}_{gg} &= 1 + \textit{a}_{\textit{s}} \textit{C}_{\textit{A}} \frac{7}{3} \ln \frac{\textit{P}_{\textit{z}}^2}{\mu^2} + \text{fin.}, \quad \textit{C}_{gq} = \textit{a}_{\textit{s}} \textit{C}_{\textit{F}} \frac{4}{3} \ln \frac{\textit{P}_{\textit{z}}^2}{\mu^2} + \text{fin.}. \end{split}$$

Factorization based on the gluon helicity distribution
 Yao, JHZ et al, JHEP 23'

$$\Delta \tilde{g}(x) = \int \frac{dy}{|y|} C_{gg}\left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \Delta g(y) + \int \frac{dy}{|y|} C_{gq}\left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \Delta q(y) + h.t.,$$

$$C_{gg} \supset \delta(1-\frac{x}{y}) + 4a_s C_A \theta(x) \theta(y-x) \left\{ \frac{(2x^2-3xy+2y^2)}{(x-y)y} \left(\ln \frac{\mu^2}{4y^2 P_z^2} - \ln \frac{x(y-x)}{y^2} \right) + fin. \right\}.$$

• Inconsistency:

- The intrinsic momentum scale in the matching shall be the parton momentum yP_{τ} , not the proton momentum P_{τ}
- Alternatively, $\int dx \Delta \tilde{g}(x) \neq C_{gg} \Delta G + C_{gq} \Delta \Sigma + h.t.$ is, in general, a convolution rather than a multiplication

 This inconsistency can be resolved for certain choices of gluon operators Pang, Yao, JHZ, JHEP 24'

$$\tilde{h}(z, P_z, \frac{1}{a}) \xrightarrow{\text{hybrid scheme}} \tilde{h}_R^{\text{hyb.}}(z, P_z) \xrightarrow{Z_T} \tilde{h}_R^{\overline{\text{MS}}}(z, P_z) \xrightarrow{\mathcal{F}, 1_{\text{th moment}}} \Delta G$$

$$(\langle PS | F^{3\mu} \mathcal{L}(z, 0) \tilde{F}_{\mu}^0(0) | PS \rangle)$$

Matching coefficients between $\tilde{h}_{R}^{\overline{\text{MS}}}(z, P_z)$ and $h_{R}^{\overline{\text{MS}}}(z, P_z)$:

$$\begin{split} &C_{gg}(\alpha,z,\mu) = \delta(\alpha) + 2a_sC_A\Big\{\Big(4\alpha\bar{\alpha} + 2\big[\frac{\bar{\alpha}^2}{\alpha}\big]_+\Big)(L_z - 1) + 6\alpha\bar{\alpha} - 4\big[\frac{\ln(\alpha)}{\alpha}\big]_+ + (-3L_z + 2)\delta(\alpha)\Big\}, \\ &C_{gq}(\alpha,z,\mu) = \frac{-2ia_sC_F}{z}\Big\{ - 2\alpha(L_z + 1) - 4\bar{\alpha} + L_z\delta(\alpha)\Big\}, \end{split}$$

Matching between $\Delta \tilde{G}$ and ΔG is trivial:

$$\begin{split} \Delta \tilde{G}(P_z,\mu) &= \frac{1}{2P_z} \int_0^\infty dz \, \tilde{h}(z,P_z,\mu) \\ &= \int d\lambda \int_0^1 \frac{d\alpha}{\bar{\alpha}} \left[C_{gg} \left(\alpha, \frac{\lambda}{\bar{\alpha}P_z}, \mu \right) h_g(\lambda,\mu) + C_{gq} \left(\alpha, \frac{\lambda}{\bar{\alpha}P_z}, \mu \right) h_q(\lambda,\mu) \right] + h.t. = \Delta G + h.t., \end{split}$$

- This inconsistency can be resolved for certain choices of gluon operators Pang, Yao, JHZ, JHEP 24'
- Relation to the matrix element of the topological current

$$\int_{0}^{\infty} dz \langle PS | m^{3\mu;0\mu} | PS \rangle = \langle PS | A^{i}B^{i} | PS \rangle |_{A^{z}=0} = \langle PS | K^{0} | PS \rangle |_{A^{z}=0}$$

$$m^{3\mu;0\mu} = F^{3\mu}(z) \mathcal{L}(z,0) \tilde{F}_{\mu}^{0}(0)$$

Trivial matching to $\langle PS | K^+ | PS \rangle |_{A^+=0} = 4S^+ \Delta G$ Hatta et al, PRD 14'

- This is similar to fixing an axial gauge on the lattice when calculating the matrix element of the topological current
- Similar conclusion also exists for other suitably chosen operators

From local operator matrix element in a fixed gauge Pang, Yao, JHZ, JHEP 24'

$$\langle P'S | K^{0/z} | PS \rangle_{\mathsf{C.G.}} \xrightarrow{\mathsf{IMF}} \langle P'S | K^{0/z} | PS \rangle_{A^+=0}$$

- But we shall start from the non-forward matrix element and take a special forward limit
- The forward limit suffers from some subtlety that can be best elucidated by examining its non-forward matrix element. In Coulomb gauge

$$\langle P'S|K^{\mu}|PS\rangle_{\nabla\cdot A=0,\text{finite}} = S^{\mu}a_1 + \text{h.t.},$$

$$\langle P'S|K^{\mu}|PS\rangle_{\nabla\cdot A=0,\text{pole}} = \frac{S^{\mu}}{S\cdot q}b_1 + \text{h.t.}.$$

• b_1 can lead to contributions that contaminate ΔG , and can be safely ignored by taking the forward limit along the direction $q^+ \gg \{q_{\perp}, q^-\}$

From local operator matrix element in a fixed gauge Pang, Yao, JHZ, JHEP 24'

$$\langle P'S | K^{0/z} | PS \rangle_{\mathsf{C.G.}} \xrightarrow{\mathsf{IMF}} \langle P'S | K^{0/z} | PS \rangle_{A^+=0}$$

 But we shall start from the non-forward matrix element and take a special forward limit

The bare result $\lim_{q\to 0} \langle P'S | K^{0/z} | PS \rangle_{C.G.}$ needs to be renormalized, we adopt RI/MOM scheme:

$$\begin{pmatrix} \Delta \, G_{\rm R}^{\rm RI} \\ \Delta \Sigma_{\rm R}^{\rm RI} \end{pmatrix} = \begin{pmatrix} Z_{11}^{\rm RI} \, Z_{12}^{\rm RI} \\ Z_{21}^{\rm RI} \, Z_{22}^{\rm RI} \end{pmatrix} \begin{pmatrix} \Delta \, G_B \\ \Delta \Sigma_B \end{pmatrix},$$

The perturbative gauge-invariance of $\langle PS|K^{0/z}|PS\rangle$ has been used.

The conversion factor from RI scheme to \overline{MS} scheme is derived at one-loop:

$$\begin{split} R_{11}^{\overline{MS},\mathrm{RI}}(\mu_R^2,\mu^2) &= 1 + a_s \Big[\beta_0 \ln \Big(\frac{\mu_R^2}{\mu^2}\Big) - \frac{367}{36} C_A + \frac{10}{9} n_f \Big], \\ R_{12}^{\overline{\mathrm{MS}},\mathrm{RI}}(\mu_R^2,\mu^2) &= a_s C_F \Big[3 \ln \Big(\frac{\mu_R^2}{\mu^2}\Big) - 6 \Big], \\ R_{21}^{\overline{\mathrm{MS}},\mathrm{RI}}(\mu_R^2,\mu^2) &= -2 a_s C_F, \\ R_{22}^{\overline{MS},\mathrm{RI}}(\mu_R^2,\mu^2) &= 1. \end{split}$$

Summary and outlook

- Understanding the spin structure of the proton is an important goal of the EicC/EIC program
- The total gluon helicity ΔG can be accessed on the lattice, two different types of approaches
 - From local operator matrix element in an appropriately fixed gauge
 - From the gluon helicity distribution $\Delta g(x)$
- Inconsistency in the factorization relations is resolved by utilizing suitable gluon operators that do not require an EFT matching
 - In particular, no Fourier transform is needed in the second approach
- Many systematic improvements need to be done