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1. Introduction

3/37



Finite Volume Corrections
J The finite volume correction (FVC) for a given quantity Q is given by

0@ = Q(L) — Q)

1z Q(L) and Q(oo) are calculated in the finite volume and infinite volume, respectively.

[ FVC are not only the theoretical interest, but also the need in the precise extraction of
physical results in lattice QCD simulation.

[d The Liischer formula provides an approach to calculate FVC to masses.

= | {ischer formula relate the finite size mass shift to an integral of a special amplitude,

evaluated in the infinite volume. [M. Lischer, Commun. Math. Phys. 104, 177-20(61986)]

1= |ts application to the study of the FVC to the masses, pions, nucleon and heavy mesons, has
been made.
[G. Colangelo, et al, EPJC 33, (2004)], [G. Colangelo, et al, NPB 721, (2005)], [G. Colangelo, et al, PRD 82, 034506 (2010)]
This approach fails in generating exponential terms beyond leading order.
A resummed version [G. Colangelo, et al, NPB 721, (2005)] Of a Liischer-formula-like asymptotic [6. Colangelo,
et al, PLB 500 (2004), 258-264] expression was proposed. But the feasibility of the Liischer formula
approach is rather limited.

5 R
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Chiral perturbation theory
[ At finite volume, another systematical and popular tool to evaluate FVC is ChPT.

[J. Gasser, H. Leutwyler, PLB 184 (1987) 83], [J. Gasser, H. Leutwyler, PLB 188 (1987) 477], [J. Gasser, H. Leutwyler, NPB 307 (1988) 763]
1 The Lagrangian is the same as the infinite case.

1= In a cubic box, momentum is discretized where the boundary conditions are imposed.
L

~
B~

E\/\/\//\/\/\/

(a) e-regime. (b) p-regime.

Fig. from [Alessio Giovanni Willy Vaghi, PHD thesis, (2015)]
== We are interested in ChPT for p-regime:

M.L>> 1
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Chiral perturbation theory

(A A multitude of works concerning FVC based on ChPT have been done :
= Masses:
[S. R. Beane, PRD 70, 034507 (2004)], [L. S. Geng, et al, PRD 84, 074024 (2011)], [L. Alvarez-Ruso, et al, PRD 88, 054507 (2013)],
[D. L. Yao, PRD 97, 034012 (2018)], [D. Severt, et al, CTP. 72, 075201 (2020)]
== Decay constants: [D. Becirevic, et al, PRD 69, 054010 (2004)], [L. S. Geng, et al, PRD 89, 113007 (2014)]
1 Nucleon electric dipole moments: [T. Akan, et ai, PLB 736, 163-168 (2014)]
= Scalar form factors in Kj3 semi-leptonic decay: [K. Ghorbani, et al, EPIC 71, 1671 (2011)]

== FVC to forward Compton scattering off the nucleon: [J. L. de Ia Parra, et a1, PRD 103, 034507 (2021)]
=

(1 Calculations of FVC in ChPT are tedious :
== Complexity occurs in the one-loop analyses.
1 Automation of the one-loop calculations of FVC is still unavailable.
1 Expressions of the results for a given quantity might be different in form.
1 Our work
= |ntend to give a unified description of the one-loop tensor integrals in a finite volume.
== Generalize tensor decomposition of the one-loop tensor integrals to the FVC case, and derive
a compact formula for the tensor coefficients.
1= Investigate the feasibility of the PV reduction of the tensor integrals.
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2. One-loop tensor integrals at finite volume
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Definition of loop integrals for FVC

[ General form of one-loop N-point rank-P tensor integrals

1 [ d% k. kie ,
TNop1, o up — i/ ( , Dj=1[(k+ Pj—1)2 — mJ? +i0™]

27T)dD1D2'--DN

with pp =0, j=1,2,---, N, and an infinitesimal imaginary part i0".
(1 The finite-volume tensor integrals
1 |n a cubic box of volume V = L3, the periodic boundary conditions k,, = QLI_“

dk
/( LBZF , n=(ny,nz,n3) with n;€Z

1= The tensor integrals at finite volume are

kP

1 A 2T 1 d9%  kHr ...
TN,M,'“,#P _ = = -
v i </ L3Z/ > D1D2 D I/\/(27T)dD1D2
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Definition of loop integrals for FVC

15 Poisson summation formula
1 dk .
=) Flk,) = ek F(k).
L3; (kn) ;/(277)36 (k)

== Then the finite-volume tensor integrals are

1 d9 . Kb ... e
TNt e = —ily-k
Y zn: i/\/(zﬂ)de D\Dy---Dy’

with a four vector /| = (0,nL) = n*L. |n| = 0 represents the infinite-volume contribution.

[ The difference between the infinite and finite cases defines the FVC, and the tensor
integrals for FVC are

d
?N,ul,--~,upzzl/ d ik ki ... e |
n;éOi \/(27T)d D1D2...DN
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Decomposition of the FVC tensor

(1 Considering the discretization effects at finite volume, a unit space-like vector n* = (0, n)
is introduced.

p1pp B pp
! P_{ggppnn gt 1 ip 95 1 °

s r

== 2s out of P Lorentz indices are distributed over the metric tensors and any pair of them are
symmetrical.

= the n-vectors occupy r Lorentz indices from the remaining ones.

15 the rest Lorentz indices are assigned to the momenta

15> the number of terms 1

25slrl(P—2s—r)!
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Examples

[d Some instructive examples

H1p2-pp __ 1 M2 . P
{pp P i1ig---ip - Fi pi2 o ip
1H2 1 2
{pn B = n,uz + n" oo
H1M2H3 _ 2 nt3 nH2 3 1 M2 3
{pp il - pﬁ i + i + n ih Fip

{pnn Hip2ps pﬁl nH2pts n“lpﬁZnM?’ + g ”M2Pﬁ3 ,
{gn}/ﬂm% — gmuz nt3 4+ gmus nH? 4+ gu2u3 nt1 ,
{gpn H1p2pH3Ha g,uluz (plllld nt4 + n#3pﬁ4) + gﬂl,u?, (pIZZ nu4 nt2 .4)
P ) 4 g (Bl )
+g#2u4 (pl_tl nt3 + nt1 #3) gH5M4( #1 nt2 + nt1 ) ,
n i
{gg H1p2p3 e glll,U«Qg,u:%/M +g$t1u3g#2u4 g,ulu4g,u2,u«3 .
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Decomposition of the FVC tensor integrals

[d The one-loop tensor integrals can be decomposed into the form as

TNopr-pp E T Nopa---pp

n#0
with
[P/2] P—2s N—
N,pi--pp — E E E ) Hivpp = . .
T {g "EP- 2541 ip—2s—r 7—“0’0 i2s+1°ip_os ¢y NN
s=0 r=0 125+1— r 2s r
’P 25— r*1

v [P/2] is the floor function.

w Tensor coefficient TV

0-+-Oizagr - aer NorsN is invariant with respect to permutation of the

SUbSCFiptS I'J", i.e. C001233 = C002133.
= the subscripts “N” are unique in the finite volume.
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Examples

(1 Decomposition of the FVC tensor integrals up to rank 3

N-1
T — Z pf‘?',N—i- TN
i—1

Thopw N4 Z Plp T + Z{pn}*‘"r% + " Thy
I,J—
ThHe = Z{gp}WP Thoi + (g P Thoy + Z Pl

ij,k=1
N—1
+ Z{P"”}W Tl + 00" Thinw -

i=1

i+ Z{ppn}“ " Tin

7,]_1
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Evaluation of the coefficients

(1 Technical steps:

Feynman Parameterization To combine propagator denominators

1. Wick rotation: do the integration in
Euclidean space

2. Gaussian Parameterization: rewrite the
denominator factors into an exponential
form. The price is introducing a parameter
lambda to be integrated over.

Perform momentum integration

Evaluation of the

coefficients

3. Complete the square of momentum, and
give the results

Express the left integral in terms
of the modified Bessel functions

Transfer the results to the

A compact formula for the tensor coefficients
Minkowski space

obtained
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Evaluation of the coefficients

(1 By the application of Feynman parameterization, the one-loop tensor integrals can be

rewritten as

1 d9% . KM L P
TNopr-pp dx —ili-k )
Z/ "’{ / 2m)d® {(k+7>N)2—M%\,+io+]N}

1= Here, the abbreviation fol dxy =T(N) f01 dxq - - fol dxy_1x2 - - - X\_2 has been used, and x;

are the Feynman parameters.
w The recursive relations of Py and M3 are

Pis1=xPi+ (L=x)pi, Pr=po,
QJ+1—X1Q + (1 - )( mi 4 sz)a szmf_l?g,
QJ-H +1’
with pgp=0and j=1,--- /N— 1.
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Evaluation of the coefficients

[ To perform the momentum integration, it's more convenient that do the integration in
Euclidean space, and then by making use of Wick rotation

E @m)9" [(kg+ PE)2 + MEAN

v The definition is ki = (K%, k) with K = ik2 and k = k.
1= Same for all the other momenta .
1 |n Euclidean space, the metric tensor is 6, = diag(1,1,1,1) .

(1 Gaussian parameterization is used to rewrite the denominator factors into an exponential
form as

N d 00
{ e }E = (=1 /dkE/O AN kZP}e*A[(kEJrPﬁ)Q+M5’2]+i/k-k5 )

LN J (2m)f
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Evaluation of the coefficients

1 Complete the square for kg in the exponential factors and shift it to kg = kg + PE — é’—;
and we get
N
{} _ (=1 o PE /OO d)\)\N—1e—,\Mﬁ’2—g
e LN 0

ke + — — Prl# oo [kg + — — PrlPP )
8 / (27r)d{[ ET oA N [ke 2 nl"re

= Owing to the domain of the momentum integral is symmetric about zero, the terms with

odd numbers of kg's vanish. ~
== The terms with even numbers of kg's can be reformulated by utilizing the following identity

TH1 TH2s 1 10 H2s (J2\S
klli' klli' _25(d/2)5{5 5}M a (k%:') )

with the Pochhammer symbol (d/2)s = I'(¢ + 5)/T'(%).
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Evaluation of the coefficients

(1 the momentum integrations over kg and P’E = ’I—k — PN = ﬂ - 73,\,

£ 25(4m)20(N) Jo
(1 Pull the rank-P tensor out of the X integral

[P/2 P—2s ) _’Ik pE E
{ } Z Z 25 47‘(‘ d/2r ){(5 (573/\/ PNu}ﬂl Hnp

s=0 r=0 r

% (I2L> (_1)P—2s—r/ d)\)\N—s—r—g—le—)\./\/lfl2 4‘;\ .
0

/oo dM¢§---§ 79,(,5. .. pI(IE}m---up)\Nfsf%fleﬂ\Mﬁ’Qf
S

2
Jic

ax

18/37



Evaluation of the coefficients

(1 Express the A integral in terms of the modified Bessel functions and change the equation
to the Minkowski space

[P/2] P—2s N+P s— AR
TNp e — /dX e gPE L PE p gy pme
nzﬂggﬁwdﬂr >< ) , g g e o)
S
n®L?|

« eilk.,PNICN,S,r,d( M2)
2

1 Py can be expressed as

N-1 '
- i o i xn—io X (I—x;) for N—12>j+1

= 2; Xwpjs X = { 1—x; otherwise

J:
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Evaluation of the coefficients
(1 By inserting the expression of Py, one get

=, [P/2] P—2s  N— (_1)N+P—s—r i\ "
P . Hipz:pp =
PSS Y oy et s (5)

n#0 s=0 r=0 125+1 =1

ip— 2s—r71
! i25+1 P—2s—r I/k Pn |n|2 L2 2
X A dXNXN : X ICN s r_i( M )

with deN = F fo dXy = fo dxq -- fol dxy_1xs - -X%:%.
1 A general expressmn for the coefficients reads

- 2 (_1)N+Pisir iL\" ! 2541 ip—2 iLn-P
e 12s. —2s—r L N-
To..0 et ip_gs_y NN = (47r)d/2 95 <2> /0 dXn Xy - Xy e N
2s r
N—s—r—d/2
|n|2L2 s E—
X <4M%\/ Ay (|n]LMN) .

1= The Lorentz invariance is broken by n- Py. 20/37



3. Reduction of Tensor Coefficients in CM frame




Center-of-Mass frame

[ It is convenient to compute FVC in the rest frame or in the CM frame, where the net
three momentum is zero.

Iy-pi=0<=n-pi=0, i=1,--- ,N—1.

1= e.g. elastic two-body forward scattering at threshold, mass renormalization in the rest frame
are satisfied by this condition.

[ This condition lead to the L*1“#? tensors with odd n-vectors vanish. And then the
dependence on n of the rank-P tensor can be relieved

1
Z PO n“2tF(n2) = 3

—  [h...hH1 B2t 2Vt n2
n#0 (ds/2)t{h h} Z( ) F( ) )

n#0

= The auxiliary tensor hy,, is defined as hy, = g, — h,h, = diag(0,—1, -1, —1) with

h, = (1,0,0,0), which serves to eliminate the zero-th component of the vector.
1 The rank-P tensor is irrelevant of n, and enable us to perform the sum over n in advance.
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Tensor coefficients of FVC integrals in CM frame
(4 The tensor decomposition of the FVC integrals

[P] [P 25]
2
TNM1 ‘Hp E § E {g .gp-- h Bp2 e pp T ) ) '
fost1,ip—as—2r * 00, fasy1-+ip_gs—ot N--- N
s=0 t=0 125+1 1 2s 2t
ip—2s—2t=1

(A The n-independent coefficients are

1
T‘O 0 iosy17+ip—as—ot NN = 2t(ds/2)tz [( ) TO -0 igst1+ ’P—2s—2tN"‘N} :

2s 2t 2s 2t

[ Now the equation relies merely on n?, then the triple sum can be replaced by a single sum
ns = n? + n% + n2 once the multiplicity 9(ns) for a given ng takes into account.
(=1°
TN = J(ns)ng TN N
0--0 igst1-+ip_2s2e NN 2t(ds/2)t Z [ ( 5) 0---0 izst1-+ip_2s_2¢ [V N]

2s 2t ns>0 2s 2t
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Passarino-Veltman reduction

(d In the CM frame, every two n-vectors are replaced by an auxiliary tensor h,,,,, and the PV
reduction is still valid.

[d The essence of PV reduction is to establish algebraic relations between the tensor
coefficients, by means of contracting the tensor integrals with external momenta pj, and
the metric tensor g,,,,, and lead to reduction of tensor rank and cancellation of

denominators.
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PV reduction of one-point tensor integrals

(1 For one-point tensor integrals, they can only be contracted by the metric tensor, and
then the recurrence relations

[(d— 1) + 2(1‘— 1)} [d—‘r 25+ 4(1’— 1)]2‘0...0 1...1 = m%ZQ...Q 1.1 -

Ag..0 1.1 +
—~— —~— —~—

2s 2t 2542 2t—2 2s 2t—2

= Specifically, the relations of one-point tensor integrals are, i.e.
dAgo + (d— 1) A = miA, ,
(d+ 2)20000 + (d— 1)20011 = m%/zoo .
== All the relations can either be checked numerically or be verified by the recurrence relations

of the modified Bessel functions K,(Y).

1= All the one-loop FVC integrals can be reduced to a linear combination of Ag.o.
~—~
t 1

S T
Ageo 11 = il Sise  TTIBD | Ageo b |
e A o 2 e 0 s
=0
where a(j) = (d— 1) +2(j— 1), b(j) = —[d+ 25+ 4(j — 1)], and ¢ is the Kronecker delta.
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PV reduction of one-point tensor integrals

(1 Schematic roadmap for PV reduction of one-loop FVC tensor integrals

A()
v"a 4 A
'.'“A i Dashed lines : represent
DR ~ashed il _
@ v, " simplification operations by the

recursive use of the recurrence
4 ......... P relations.
. V'z‘ "'.. D A D
- . = The Ag, Aoo, Aoooo, etc, can be

- - e e adopted as the tensor basis.
4 ....... Agopor1 < Aot 11 A p
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PV reduction of two-point tensor integrals

(1 Schematic roadmap for PV reduction of two-point FVC tensor integrals

Boooor +—Boo11—— B1111

BlllZZ BOOIZZ

Bl 2222

= Dashed lines : the number of
subscripts “2" is reduced by
recursively utilizing the relation
deduced by contracting the g, .

1= Solid lines : the indices “1" can
be eliminated by making use of
the relation obtained by
contracting of the external
momentum p1,,.

1 Like the case for one-point
integrals, the tensor coefficients
only with even numbers of “0"
survive.
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PV reduction of N-point tensor integrals

[ Schematic roadmap for PV reduction of N-point FVC tensor coefficients

Iy r ~
v, R .
LY == Dashed lines : by recursively
?, utilizing the relation deduced by
------------------- o contracting the .
[T JE 1, ey 5 a
R S = Solid lines : by making use of
. ' the relation obtained by
I contracting of the external
T%MG momentum pJ’-“.
f [ f 1= The boxed coefficients are

P 7N > TN
Toooo:. TOOm iy iyigisiyis TII[IiSNN TOOilNN TxlNNNN chosen as the tensor b asis.

4 It is a first attempt and only aim at ﬁnding out the feasibility of PV reduction and the
existence of a tensor basis for the one-loop integrals at finite volume.
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4. A Pedagogic Example of Application
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The FVC of nucleon mass

(1 Leading one-loop Feynman diagrams contributing the nucleon mass

(a) (b)

[d The self-energy of the nucleon can be expressed as

(g ) =D [A+ pB+ AC]

n#0

1w A, B and C are functions of the scalar products of the external momentum and the unit
space-like vectors.

== The occurrence of the third term is due to the introduction of spatial boundary conditions of
the finite volume.
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The FVC of nucleon mass

(J The self-energy functions for (a)

5 R R R N . o~ -
A, = i%‘FTN{sBo + 2By + dByo + sBi1 4 n*Baa — 2n- p [52 + Bl?] } )

3 - ~ _ ~ ~ ~ ~
B, = %{581 + 25B11 + 2dBoo + (d + 2)Boo1 + sBi11 + n*(2B22 + Biaz)

—2n-p [/Bz + 2B + Enz] } )

3 ~ ~ ~ ~ ~
Ca= %{532 — (d+ 2)Booz — sBi12 — n’Baga 4 2n - PB122} s

= § = p2_
1= g, is the axial coupling constant, F is the pion decay constant, and my denotes the nucleon

mass in the chiral limit.
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The FVC of nucleon mass

1 In the CM frame, one has t(p)fiu(p) = 0. And the self-energy functions for (a) can be

simplified to

34

_ 28amn
A, = 1P

{Séo + 25By + dBoo + sBi1 + (d— 1)§22} ,

3 ~ ~ . ~ ~ ~ ~
B, = ﬁ{sBl + 25B11 + 2dBoo + (d + 2)Boo1 + sBin + (d — 1) [2322 + Bm] } ~

4F%

[ The form is by making use of PV reduction

A = 20 L i 1)+ 18 B i i 230}

Ba(L) = - Au(L) .

my

where M, is the pion mass and L is the size of the spatial cubic box.
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The FVC of nucleon mass

(d The self-energy functions for (b)

iy ~ ~
As(L) = =35 {(mi = miy + 3M) Ao (M; L) — (A + miy — Mz)Ao(mi; L)
A B s M ) |
h? ~ ~
By(L) = W/M{A(mi miv, M2)Ao(mia; L) — [(ma — Mz)® — miy + 4miyMz)Ao(Mz; L)

+ 4m/2v[7\oo(m2A; L) - ZOD(MEH L)]

AR, mi, M2 ) (s + iy — M) Bo (i, s, M2 L>} ,

i Kallén function \(a, b, ¢) = a* + b> + & — 2ab — 2ac — 2bc.
= hy is the coupling constant of the 7 NA interaction, and mpa is the mass of the A resonance
in the chiral limit.
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A pedagogic example of application
[ The expression of the FVC on the nucleon mass
myVO(L) = [A(L) + myB(L)]

with A(L) = A,(L) + Ap(L) and B(L) = B,(L) + Bp(L).
J FVC to the nucleon mass

5 T T
£ -~ only NV [w PV reduction] == The validity of the PV reduction for the FVC
[ N only A [w PV reduction] ] - . . e .
af N&A [w PV reduction] tensor coefficients is explicitly verified.
o N&A [w/o PV reduction]
only N [Alvarez-Ruso et al, 2013] 1= The result of diagram (a) is identical to the

one given in Ref. [L. AwarezRuso, et al, PRD 88, 054507
(2013)].

miYC [100 x MeV]

= The contributions of the nucleon and delta
loops are comparable with each other, which

e implies the importance of the A resonance in

the estimation of FVC to the nucleon mass.
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A pedagogic example of application

[d The L-dependence of the nucleon mass with different pion mass.

5 —r w ‘
M, =134 MeV
.......... My = 300 MeV
4 -~ My =450 MeV
- <o+ My =600 MeV
[}
= 3
X
f=3
(=
=
o 2p
£z
3

L [fm]

== For a given finite size L, the larger the pion mass is, the smaller the FVC become.
1= The effect of FVC on the nucleon mass becomes negligible when M, L 2 3.
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5. Summary and Outlook
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Summary and Outlook

[ A systematical formulation of one-loop tensor integrals for FVC is achieved.

[d A compact formula for the tensor coefficients in the decomposition has been
derived, which is suitable for numerical computations.

[d CM frame: the tensor coefficients can be simplified by means of PV reduction.

(1 An example is given to illustrate the application of our formulation.

[d The formulation pave a path for efficient computations of FVC. (eg. can be readily

implemented in FeynCalc.)

[ Chiral extrapolation of Lattice QCD results with FVC and precise extraction of
physical quantities.

(1 Generalize to two-loop integrals.

Thank you very much!
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