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Pion form factor
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Pion form factor

”In elementary particle physics and mathematical physics, in
particular in effective field theory, a form factor is a function
that encapsulates the properties of a certain interaction
without including all of the underlying physics, but instead,
providing the momentum dependence of a suitable matrix
elements. Its further measured experimentally in confirmation
or specification of a theory.”

Momenta Redistribution
⇓ QCD is believed to confine

hadron structures ⊗ hard scattering
⇓

factorisation theorem, EFT; CKM, g-2, B anomalies
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Pion form factor

PION is the lightest and one of the most simplest hadrons,
hence the ideal probe to extremely rich QCD dynamics, including confine and
chiral symmetry breaking.

Rich measurements of FN in different energy regions

⇒ not so much for Fπ
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Pion form factor
Measurements of Fπ in different energy regions

• Spacelike data is available in the narrow region q2 ∈ [−2.5,−0.25] GeV2

Jefferson Lab 2006,2008, · · · , NA7 1996, CLEO 2005

• Timelike data is dominated by the resonant states, have not extend to
large momentum transfers (perturbative QCD available)

Whole region of momentum transfers for electromagnetic form factor

• Mismatch between the QCD based calculation and the available data
• could be restored by employing the dispersion relation
• pQCD prediction at large |q2| is indispensable
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perturbative QCD approach

i Dispersion relations
ii Pion LCDAs
iii Three-scale factorization
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Dispersion relations
• QCD calculations are valid in the intermediate/large |q2|

N2LO calculation in collinear factorization ∼ NLO [Chen2, Feng, Jia 2312.17228]

spacelike data is available in the narrow region q2 ∈ [−2.5,−0.25] GeV2

• the mismatch destroys the direct extracting programme from Fπ(q2 < 0)

• timelike data Fπ(q2 > 0) provides another opportunity
△ e+e− → π+π−(γ), 4m2

π ⩽ q2 ≲ 9 GeV2 [BABAR 2012]
△ τ → ππντ , 4m2

π ⩽ q2 ⩽ 3.125 GeV2 [Belle 2008]
△ e+e−(γ) → π+π−, 0.6 ⩽ Q2 ⩽ 0.9GeV2 with ISR [BESIII 2016]

• The standard dispersion relation and The modulus representation

Fπ(q2 < s0) =
1

π

∞∫
s0

ds
ImFπ(s)

s − q2 − iϵ
⇓ [ SC, Khodjamirian, Rosov 2007.05550]

Fπ(q2 < s0) = exp

q2
√

s0 − q2

2π

∞∫
s0

ds ln |Fπ(s)|2
s
√

s − s0 (s − q2)


|Fπ(s)|2 = Θ(smax − s) |Fdata

π,Inter.(s)|2 + Θ(s − smax) |FpQCD
π (s)|2
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Factorization formular
(spacelike) electromagnetic form factor

⟨π−(p2)
∣∣Jemµ ∣∣π−(p1)⟩ = eq (p1 + p2)µ Fπ(Q2)

• the interaction distance of Jemµ is decided by the external reason Q2

• at large Q2, z̄ip̄i ∼ 1, the expansion is performed in twist

• Separate the hard partonic physics out of the hadronic physics (soft,
nonperturbative objects) in exclusive processes Factorization

dσ
dΩ =

∫ 1

u

dζ
ζ

H(t)(ζ)f(t)(
u
ζ
)

• The universal nonperturbative objects can be studied by QCD-based
analytical (QCDSRs, χPT, instanton) and numerical approaches (LQCD)

• also by performing global fit, CETQ, CT, MMHT, NNPDF, ABM, JAM, et.al.
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Pion LCDAs
In the exclusive processes with large momentum transfers, pion is described by
the light-cone distribution amplitudes (LCDAs)

• Wave function of bound state in terms of Fock states

|π⟩ = ψqq̄|qq̄⟩+ ψqq̄g|qq̄g⟩+ψqq̄qq̄|qq̄qq̄⟩+ ψqq̄gg|qq̄gg⟩+ · · ·
ψn
π(ui, k⊥i, λi) = ⟨n, ui, k⊥i, λi|π⟩

• large Q2, k⊥ is neglected/integrated ψn
π(ui, µ, λi)

• separate out the spin to obtain the LCDAs ϕn
π(ui, µ,Q)

• LCDAs are dimensionless functions of ui and renormalization scale µ
△ describe the probability amplitudes to find the π in a state with minimal number of constitutes and
have small transversal separation of order 1/µ

△ Expansion in power of large momentum transfer is governed by contributions from small transversal
separations x2 between constituents

• The definition of LCDAs is the application of conformal symmetry in
massless QCD [Braun, Korchemsky, Müller 2003]
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Pion LCDAs
Conformal symmetry in massless QCD

• the underlying idea of conformal expansion of LCDAs is similar to
partial-wave expansion of wave function in quantum mechanism

• invariance of massless QCD under conformal trans. VS rotation symmetry
• longitudinal ⊗ transversal dofs VS angular ⊗ radial dofs
• the transversal-momentum dependence (scale dependence of the relevant operators) is

governed by the RGE
• the longitudinal-momentum dependence (orthogonal polynomials) is described in

terms of irreducible representations of the corresponding symmetry group
collinear subgroup of conformal group SL(2, R) ∼= SU(1, 1) ∼= SO(2, 1)

• LCDAs are defined at different twists
⟨0|ū(x)γµγ5d(−x)|π−

(P)⟩ = fπ
∫ 1

0
du eiζP·x

[
iPµ

(
ϕ(u) +

x2

4
g1(u, µ)

)
+

(
xµ −

x2Pµ

2P · x

)
g2

]

⟨0|ū(x)iγ5d(−x)|π−
(P)⟩ = fπmπ

0

∫ 1

0
du eiζP·x

ϕ
p
(u, µ)

⟨0|ū(x)iσµνγ5d(−x)|π−
(P)⟩ = −

ifπmπ
0

3

(
Pµxν − Pνxµ

) ∫ 1

0
du eiζP·x

ϕ
σ
(u, µ)

△ collinear twist: dimension - spin projection on the plus-direction △ geometric twist: dimension - spin
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Pion LCDAs

LCDAs are defined at different twists

• quark fields are decomposed into ”good” and ”bad” components based
on light-cone quantization formalism [Kogut and Soper 1970, Jaffe and Ji 1992]

ψ = ψ+ + ψ−, ψ+ =
1

2
γ∗γ·ψ, ψ− =

1

2
γ·γ∗ψ

γ∗ = γµzµ, γ· = γµpµ/(p · z)

• a bad component introduce one unit of twist
• composite operators of type ūd contains twist 2 (ū+d+), twist 3

(ū+d−, ū−d+) and twist 4 (ū−d−)

• ϕ(x) and ϕp,t(u) are the twist 2 and twist 3 LCDAs

ϕ(u, µ) = 6u(1− u)
∑
n=0

aπn (µ)C
3/2
n (u)

ϕσ(u) = 6u(1− u)
[
1 + 5η3πC3/2

2 (u)
]

ϕp(u, µ) =
[
1 + 30η3πC1/2

2 (u)− 3η3πω3πC1/2
4 (u)

]
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Pion LCDAs
• Three sources of high twist LCDAs

† ”bad” components in WFs in particular of those with ”wrong” spin projection
† transversal motion of q(q̄) in the leading twist components

given by the integrals with additional factors of k2⊥
† higher Fock states with additional g and qq̄ pairs

• higher twist contributions to exclusive QCD processes are commonly
power suppressed O(1/Q)

• but twist 3 contribution are dominate in the π,K evolved processes due
to chiral enhancement O(m0/(xiQ))
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Three scale factorization
• end-point singularities appear in exclusive QCD processes

† m2
1,2 ≪ Q2, light-cone coordinate p2 = ( Q√

2
, 0, 0T), p3 = (0, Q√

2
, 0T),

(anti-)valence quarks: k2 = x2p2, k̄2 = x̄2p2

ϕ ∝ u(1 − u), mπ
0 ϕ

P,σ ∝ mπ
0

∝
∑

t
∫

du1du2κt(ui)
αs(µ)ϕt

1(u1)ϕt
2(u2)

u1u2Q2u2Q2

• pick up kT in the internal propagators

M ∝
∑

t=2,3,4

∫
du1du2dk1Tdk2Tκt(ui)

αs(µ)ϕ
t
1(u1)ϕ

t
2(u2)

u1u2Q2 − (k1T − k2T)2

• end-point singularity at leading and subleading powers

H ∝ αs(µ)

u1u2Q2 − k2
T
∼ αs(µ)

u1u2Q2
− αs(µ)k2

T
(u1u2Q2)2

+ · · ·

• the power suppressed TMD terms becomes important at the end-points
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Three scale factorization

• introduce kT to regularize the end-point singularity [Huang 1991]

• scales of transversal momentum and the large logarithms [borrowed from H.N Li]

• multiple scales, hence large single logarithms in H/Φ by QCD correction
• double logs in the soft-collinear regions αs(µ) ln2(k2

T/m2
B)
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Three scale factorization

• in order to repair the perturbative expansion, do resummation
• kT resummation for H to obtain S(xi, bi,Q) [Botts 1989, Li 92]

† decreases the inverse power of the q2 in the divergence amplitude
† exhibits high suppression for large transversal distances (small kT) interactions

• integrating over kT, large log ln2(xi) when intermediate gluon is on shell
• threshold resummation for Φ to obtain St(xi,Q) [Li 1999]

† suppresses the small xi regions
† repairs the self-consistency between αs(t) and hard log ln(x1x3Q2/t2)

‡ dynamics with kT <
√

QΛ is
organized into S(x, b,Q)

‡ dynamics in small x is suppressed
by St(x,Q)
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M =
∑

t ϕ
t(u1, b1)⊗Hi(t, b)⊗ ϕt(u2, b2)Exp

[
−s(p+, b)−

∫ t
1/b

dµ̄
µ̄
γϕ(αs(µ̄))

]
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Form factors
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Pion electromagnetic form factor
• the precise pQCD calculation, up to twist 4 at NLO

[Chai, SC, Hua 2209.13312]

• the most interesting parameters in leading twist LCDAs is moments
• up-to-date LCSRs calculation of spacelike form factor

LCSRs calculation does not involve odd twist LCDAs under the chiral symmetry limit

• fit to the modular dispersion relation result with timelike data
• a2 = 0.275± 0.055, a4 = 0.185± 0.065 [SC, Khodjamirian, Rosov 2007.05550]

△ Pion deviates from the purely asymptotic one △ aπ2 is not enough

△ 0.258+0.079
−0.052 [LPC 2201.09173[hep-lat]], 0.249+0.005

−0.006 [Li 2205.06746]
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Pion electromagnetic form factor

• twist three LCDAs are accompanied by a chiral mass

χ2 =
11∑

i=1

[
FDR2
π (Q2

i )−FpQCD
π (Q2

i )
]2

[δFDR2
π (Q2

i )]
2

• the most precise pQCD calculation, fit to the modular dispersion relation
• mπ

0 = 1.37+0.29
−0.32 GeV [2209.13312]

△ smaller than the χPT result mπ
0 (1GeV) = 1.89 GeV [Leutwyler 1996]

△ also smaller than the value obtained with MS current quark masses mπ
0 = m2

π/(mu + md)
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Pion electromagnetic form factor

• the precise pQCD calculation
• modular dispersion relation with e+e− annihilation data

• a comprehensive description of Fπ(q2) in the whole kinematics

• a slight derivation in the small region

[Chai, SC, Hua 2209.13312]

• intrinsic transverse
momentum ?[LPC 2302.09961]

• dynamical chiral symmetry
breaking ?[Chang et.al. 1307.0026]
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Pion electromagnetic form factor
• consider contribution from the iTMD dynamic at kT ∼ λQCD

fπmP
0

2
√
6
ϕ

p
(u, µ) =

∫ d2 k⃗T
16π3

ϕ
p
2p(u, k⃗T) +

∫ d2 k⃗T1

16π3

d2 k⃗T2

4π2
ϕ

p
3p(u, k⃗T1, k⃗T2).

ψ
p
2p(u, k⃗T) =

fπmP
0

2
√
6
ϕ

p
2p(u, µ)Σ(u, k⃗T),

ψ
p
3p(u, k⃗1T, k⃗2T) =

fπmP
0

2
√
6
η3πϕ

p
3p(u, µ)Σ′

(αi, k⃗1T, k⃗2T).

• comparison with the impressive LQCD calculation [H.T Ding et.al, 2404.04412]

[Chai, SC to be appear]

The Lattice band from χQCD [2006.05431]

• the slight derivation is still there despite its sensitive to iTMD in the small q2

• form factor of K meson is also studied
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Pion transition form factor
• Fπγγ∗ is the theoretically most clean observable ∝ aπn
• Two-loop calculation of Fπγγ∗ in hard-collinear factorization theorem

N2LO ∼ NLO

[Gao, Huber, Ji and Wang 2106,01390]

Model-I [Brodsky, Teramond 0707.3859, RQCD 1903.08038]
Model-II [SC, Khodjamirian, Rosov 2007.05550]
Model-III [Mikhailov, Pimikov, Stefanis 1604.06391]

Hadronic light-by-light scattering (HLbL) contribution to aHLbL;π0

µ

[Gérardin, Meyer, Nyffeler 1607.08174]

• NLO pQCD calculation with the iTMD
contribution

† improve the pQCD power in the intermediate
momentum transfers

† modification in the small and intermediate
regions is significant

• η(′), ηq and ηs TFF are is also studied

[Chai, SC to be appear]
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Conclusion

• in the light-cone dominated processes, hadron structure is well
studied in terms of LCDAs

• a comprehensive studies of Fπ(q2) with pQCD calculation and
modular dispersion relation

• help to reveal inner structure of pion (moments, iTMD)
• settle down the ”fat pion” issue in Fπγγ∗

Belle II,BESIII,JLab and future e+e− colliders

[Christoph 1810.00654[hep-ex]]

Thank you for your patience.
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Backup slides Dispersion relations

• Introducing an auxiliary function gπ(q2) ≡ ln Fπ(q2)
q2
√

s0−q2
[Geshkenbein 1998]

• Cauchy theorem and Schwartz reflection principle

gπ(q2) =
1

π

∞∫
s0

ds
Im gπ(s)

s − q2 − iϵ

• At s > s0 on the real axis, the imaginary part of gπ reads as

Im gπ(s) = Im

[
ln(|Fπ(s)|eiδπ(s))

−is√s − s0

]
=

ln |Fπ(s)|
s√s − s0

,

• Substituting gπ(q2) and Im gπ(s) into the dispersion relation, for q2 < s0

ln Fπ(q2)
q2
√

s0 − q2
=

1

2π

∞∫
s0

ds ln |Fπ(s)|2

s √s − s0 (s − q2)

• The modulus representation [SC, Khodjamirian, Rosov 2007.05550]

Fπ(q2 < s0) = exp

q2
√

s0 − q2

2π

∞∫
s0

ds ln |Fπ(s)|2
s
√

s − s0 (s − q2)


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Backup slides Pion PDF,TMD,GPD

Definitions of pion distribution

One dimension PDF

△ fi(ζ) =
∫ dz−

4π
e−iζP+z− ⟨π|ψ̄i(0, z−, 0T)γ+ψi(0)|π⟩

△ ζ = k+
P+ , the parton momentum fraction

△ fi(ζ) ∼
∑

α

∫
dk2T⟨π|b†k,αbk,α(ζP+, kT, α)|π⟩
number operator

△ Transversal momentum distributions (TMD) f(ζ, kT)

△ Generalized parton distributions (GPD) f(ζ, bT)

Extracted from fixed target πA data

Drell-Yan

Deeply virtuality meson production

Leading neutrons

△ TDIS at 12GeV JLab, leading proton observable, fixed target instead of collider (HERA);
△ EIC, EIcC, great integrated luminosity to reduce the systematics uncertainties;
△ COMPASS++/AMBER give π-induced DY data.
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