The ω -meson from lattice QCD

Haobo Yan (燕浩波)

With Maxim Mai, Marco Garofalo, Ulf-G. Meißner, Chuan Liu, and Liuming Liu, Carsten Urbach

School of Physics, Peking University Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn Institute of Modern Physics, Chinese Academy of Sciences

Based on: arXiv:2407.16659, PRL accepted

Oct 13, 2024

ω : the first neutral vector meson (1961)¹

Phenomenologically²,

- ω is the lightest hadron decaying into three particles: $\omega \to 3\pi$
- ullet ω dominates the isoscalar response within the VMD picture of the photon-nucleon interactions
- ω generates the observed repulsion at $< 1\,{
 m fm}$ in the one-boson-exchange picture of the N-N interaction
- ω mixes with the ρ and leads to marked effects in the pion vector form factor
- $\omega
 ho$ mass splitting is phenomenologically interesting, for instance muon g-2 and dark matter

¹Maglic *et al.* (1961).

²Sakurai (1960); Erkelenz (1974); Brown and Jackson (1976); Barkov et al., 1985; Connell et al. (1997); Bazavov et al. (2021).

Haobo Yan (HISKP, PKU)

Three-body problem

Gravitational three-body problem

- Goal: space-time trajectories unsolvable
- Birth of mathematical chaos

Quantum mechanical three-body problem

- Goal: rigorous scattering theory **solvable**
- Spectra from lattice QCD
- Tests of the fundamental theory

Three-body problem

For ω -meson

- Three-body problem with resonances in two-body problem
 - $\blacktriangleright \ \pi\pi\pi \to \omega$
 - $\blacktriangleright \ \pi\pi \to \rho$
- Most challenging isospin in the $\pi\pi\pi$ channel
- e.g. $I\,{=}\,0~\pi\pi\to\sigma$
- Spectroscopy in CLQCD is promising

A taste: Two-body problem on the lattice

 $D\pi$ scattering at the physical point²

- Two-pole structure is to be found in the coupled $D\pi D\eta D_s \bar{K}$ scattering
- $1/a_0$ at the physical point: not consistent with the PDG value (there are no real measurements actually)
- An clear trend for the motion of the $D_0^*(2300)$ pole is identified.

bound state \rightarrow virtual state \rightarrow resonance

²Haobo Yan, Chuan Liu, Liuming Liu, Yu Meng, and Hanyang Xing, $D\pi$ scattering, arXiv:2404.13479.

Three-body problem on the lattice – History

Two-body problem: looks good :)

- 2019: $\pi\pi\pi$ at maximal isospin, PRL 122, 062503,
- 2020: $\pi\pi\pi$ at maximal isospin, PRL 124, 032001
- 2020: $\pi\pi\pi$ at maximal isospin, PRD 101, 114507
- 2020: *KKK* at maximal isospin, $I = \frac{3}{2}$ *KKK*
- 2021: $\pi\pi\pi$ at maximal isospin, PRL 126, 012001
- 2021: $\pi\pi\pi$ at maximal isospin, EPJC 81, 436
- 2021: $\pi\pi\pi \to a_1(1260)$, PRL 127, 222001
- 2023: $\pi\pi K$ and $KK\pi$ at maximal isospin, JHEP 05, 137

Three-body problem: all repulsive except one study :(

The methodology

- $I = 1 \ \pi\pi$ and $I = 0 \ \pi\pi\pi$ spectra
- Develop the formalism to map finite to infinite volumes
- Establish the pertinent EFT and parametrize the three-body force
- Solve the integral equations and search the poles

Disclaimer

- $\omega \to \pi^+\pi^-$ is forbidden due to ${\it G}\mbox{-parity}$ but only 2%
- Mixing with the ϕ or $\omega(1420)$ are ignored since they are too high to play a role in our analysis
- Also, strangeness is not considered
- F32P21 has a very small $m_{\pi}L \approx 2.6$
- Number of energy levels is limited
- Continuum extrapolations are challenging
- ChPT assumptions are to be tested (*e.g.* the universality assumption $g_{\rho\pi\pi} = g_{\omega\rho\pi}$)
- There are cutoffs in the quantization condition

Lattice setup

Ensemble	Volume	$M_{\pi}/{ m MeV}$	$N_{ m confs}$
F32P21	$32^3 \times 64$	206.8(2.1)	459
F48P21	$48^3 \times 96$	207.58(76)	221
F32P30	$32^3 \times 96$	303.61(71)	777
F48P30	$48^3 \times 96$	304.95(49)	201

 $\bullet~$ CLQCD ensembles with $\mathit{N}_{\rm f}=2+1$ Clover fermions [CLQCD, 2024]

- Two pion masses with two volumes
- At the same lattice spacing $a = 0.07746(18) \, {\rm fm}$

Operator construction

- Construction tool **OpTion**³ is utilized to generate general *N*-hadron operators with arbitrary momenta
- P-wave between all $\pi \rightarrow \text{irrep } T_1^-$
- Isospin addition $1\otimes 1\otimes 1=(0\oplus 1\oplus 2)\otimes 1=0\oplus 1^3\oplus 2^2\oplus 3$
- Project to I = 0

• Necessary to have all kinds of operators for low-lying levels

³https://github.com/wittscien/OpTion

Contraction topologies

- Insanely many diagrams (202 for only $\pi\pi\pi \to \pi\pi\pi$, only 9 for the two-body problem)
- The topologies for $\pi\pi\pi \to \pi\pi\pi$

- Distillations [Peardon et al., 2009] for the vast number of annihilation diagrams⁴
- Collect all operators with different momentum configurations and do GEVP
- The spectra are stable against more non-local operators / thermal pollution / N_v

⁴Haobo Yan, Chuan Liu, Liuming Liu, Yu Meng, and Hanyang Xing, $D\pi$ scattering, arXiv:2404.13479.

The ω -meson | Lattice China 2024

Finite-volume spectra

- Strong **attraction** in both the $\pi\pi$ and $\pi\pi\pi$ channels
- In the $\pi\pi\pi$ channel, the ground levels indicate **bound** ω at $M_{\pi} \approx 305 \text{ MeV}$ and **resonating** ω at $M_{\pi} \approx 208 \text{ MeV}$
- Restricted to be below the $\omega(1420)$ region

Quantization condition

- Using FVU (Finite-Volume Unitarity) of all state-of-art formalisms
 - FVU [Mai and Döring, 2017]
 - RFT [Hansen and Sharpe, 2014]
 - NREFT [Hammer, Pang, and Rusetsky, 2017]

- Two-body quantization condition is equivalent to Lüscher's equation
- Project to T_1^- irrep with the coefficients of the operators from **OpTion**
- Spectator momentum cutoff: $ec{p}_{\max} = [0,1,1]$
- Two-body input cutoff: $\tilde{K}^{-1} \to (1 + e^{-(\sigma \sigma_0)/M_\pi^2}) \tilde{K}^{-1}, \sigma_0 = 2$
- Other $ec{p}_{\max}$ and σ_0 are tested and have **no relevant effect** on the extracted observables

Parametrizations

Combined fit for $\pi\pi$ and $\pi\pi\pi$ spectra **GEN** $\begin{cases}
\sim a_0 + a_1\sigma + \cdots \\
\sim c_0 + a_1\sigma + \cdots$

- Fit each M_{π}
 - GEN: $[a_0, a_1, c_0, c_1]$
- Fit all M_{π} 's

• EFT2:
$$[g, \delta]$$
: $(M_{\rho} = \sqrt{2}gf_{\pi}, M_{\omega} = M_{\rho} + \delta)$

► **EFT4** (main): $[g, \delta, M_V, a]$: $(M_\rho = M_V + a M_\pi^2, M_\omega = M_\rho + \delta)$

⁵Meißner (1988).

Finite-volume spectra revisited

- $\chi^2_{\rm dof}({\rm EFT4}) = 2.3$
- Continuous spectra from FVU
- High-lying energies above the cutoff are also well-predicted
- EFT4 could be improved by including further chiral corrections
- Exponential effects from F32P21 are tested
- High-lying energies are tested

Finite-volume spectra revisited

- $\chi^2_{\rm dof}({\rm EFT4}) = 2.3$
- Continuous spectra from FVU
- High-lying energies above the cutoff are also well-predicted
- EFT4 could be improved by including further chiral corrections
- Exponential effects from F32P21 are tested
- High-lying energies are tested

Pole positions

• Solve the integral equation [Mai and Döring, 2017] $T = B + C + \int \frac{d^3l}{(2\pi)^3} \frac{B+C}{2E_d \tilde{K}^{-1} - \Sigma^{IV}} T$

- ω is indeed a **bound state** at $M_{\pi} \approx 305 \,\mathrm{MeV}$ and a **resonance** at $M_{\pi} \approx 208 \,\mathrm{MeV}$
- 1σ agreement of $\operatorname{Re} M_\omega$ between all three methods
- Extrapolate to the physical pion mass, the poles agree astonishingly well with the PDG values

- $\bullet\,$ First-ever determination of the $\omega\text{-meson}$ pole from lattice QCD
- Development of the FVU, matching EFT and FVU
- Paved the way to study heavier three-hadron resonances
- The lattice artifacts are to be investigated
- $\bullet\,$ The ρ and ω pole positions at the physical point

$$\sqrt{s_{\rho}} = (748.9(10.0) - i63.5(1.8)) \text{ MeV}$$
$$\sqrt{s_{\omega}} = (778.0(11.2) - i3.0(5)) \text{ MeV}$$

Outlook

For three-body, the following is planned with CLQCD ensembles

- $\pi\pi\pi$ with I = 1, 2, 3
- $KK\pi, K\pi\pi$
- Not a challenge: $T_{cc} \rightarrow DD\pi$
- Challenge: Roper $\rightarrow N\pi, N\pi\pi$

Apart from spectroscopy, there are millions we, you and me, can do...

• Collaborations are very welcomed

Thank you!

Outlook

For three-body, the following is planned with CLQCD ensembles

- $\pi\pi\pi$ with I = 1, 2, 3
- $KK\pi, K\pi\pi$
- Not a challenge: $T_{cc} \rightarrow DD\pi$
- Challenge: Roper $\rightarrow N\pi, N\pi\pi$

Apart from spectroscopy, there are millions we, you and me, can do...

• Collaborations are very welcomed

 ω also thanks you! $(\geq \omega \leq)$