

Study Zc(3900) with three coupled channels based on T_{cc}

Jia-Jun Wu (University of Chinese Academy of Sciences) Collaborator: Kang Yu (UCAS), G.-J. Wang(KEK), Zhi Yang(UESTC) [hep-ph] 2409.10865

CLQCD2024

2024.10.14

Changsha, Hunan Nor

Outline

- Background
- Formalism
- Data Fit
- Pole and Finite volume spectra
- Summary and Outlook

Background

Background

Question: How is a hadron composed of these possible components? strong interaction ← Colorful → quark level Colorless → hadron level

A more comprehensive framework for systematically describing hadrons

quark level && hadron level.

Not only one, at least a set of hadron

Zc(3900)

BESIII: Belle-II: CLEO-c: BESIII: BESIII:	$\begin{split} e^+e^- &\rightarrow J/\psi \pi^+\pi^-, \\ e^+e^- &\rightarrow J/\psi \pi^+\pi^-, \\ e^+e^- &\rightarrow J/\psi \pi^0\pi^0, \\ e^+e^- &\rightarrow (D\overline{D}^*)^{\mp}\pi^{\pm}, \\ e^+e^- &\rightarrow \eta_c \rho^{\pm}\pi^{\mp}, \end{split}$	PRL 110, 252001 (2013) PRL 110, 252002 (2013) PLB 727, 366 (2013) PRL 112, 022001 (2014) PRD 92, 092006 (2015) IJMPA 33, 1830018 (2018)	 [12] Braaten, PRLett. 111, 162003 (2013), [13] Dias, Navarra, Nielsen, and Zanetti, PRD 88, 016004 (2013) [14] Qiao, Tang, EPJC 74, 3122 (2014) [15] Wang, CPC 45, 073107 (2021) [16] Maiani, Polosa, Riquer, SB 66, 1616 (2021), [17] Wang, Hanhart, Zhao, PRL 111, 132003 (2013), [18] Aceti, Bayar, Oset, Torres, Khemchandani, Dias, Navarra, Nielsen, PRD 90, 016003 (2014) [19] Albaladejo, Guo, Hidalgo-Duque, Nieves, PLB 755, 337 (2016) [20] Gong, Guo, Meng, Tang, Wang, Zheng, PRD 94, 114019 (2016) [21] He, Chen, EPJC 78, 94 (2018) [22] Ortega, Segovia, Entem, Fernandez, EPJC 79, 78 (2019),
Belle-II: LHCb: LHCb:	$\begin{split} &\bar{B}^0 \to J/\psi \pi^+ K^-, \\ &B^0 \to J/\psi \pi^+ \pi^-, \\ &B^0 \to \psi (nS) \pi^+ K^-, \end{split}$	PRD 90, 112009 (2014) PRD 90, 012003 (2014) arXiv:2403.04051 [hep-ex].	
Compact tetraquark states [12 - 16] D D [*] resonances or virtual molecular states [17 - 27] Cusp effects [28] Non resonant mechanisms [29, 30]			 [23] Yang, Cao, Guo, Nieves, Valderrama, PRD 103, 074029 (2021) [24] Yan, Peng, Sanchez, Valderrama, PRD 104, 114025 (2021) [25] Du, Albaladejo, Guo, Nieves, PRD 105, 074018 (2022) [26] Chen, Du, Guo, 2310.15965 [27] Lin, Wang, Cheng, Meng, Zhu, 2403.01727 [28] Swanson, PRD 91, 034009 (2015) [29] Wang, Chen, Liu, Matsuki, EPJC 80, 1040 (2020) [30] Detten, Baru, Hanhart, Wang, Winney, Zhao, 2402.03057

The lattice calculation of Zc(3900)

[1] Prelovsek, Leskovec, PLB 727, 172 (2013)
[2] Prelovsek, Lang, Leskovec, Mohler, PRD 91, 014504 (2015)
[3] Sadl,Collins,Guo,Padmanath,Prelovsek,Yan 2406.09842

[1] using $\pi J/\psi$ and $\overline{D}D^*$ meson-meson interpolators at $m_{\pi} \sim$ 266 MeV.

[2] included additional meson-meson and diquark-antidiquark interpolators in the simulation.

[3] combine with experimental data by $\pi J/\psi$ and $\overline{D}D^*$ two channel EFT they extract several poles around 3900 MeV.

[4] Hadron Spectrum, JHEP 12, 89 (2016)
[5] Y. Chen et al., PRD 89, 094506 (2014)
[6] Liu, Liu, Zhang, PRD 101, 054502 (2020)
[7] CLQCD Collaboration CPC 43 103103 (2019)

[4] found that compact tetraquark operators had minimal impact on finite volume spectra at $m_{\pi} \sim 391 \text{ MeV}$ [5, 6,7] using meson-meson interpolators at three different m_{π} values, none of these studies identified a clear candidate for the Zc state.

[8] HAL QCD, PRL. 117, 242001 (2016) [9] HAL QCD JPG 45, 024002 (2018)

[8, 9] extracted the $\pi J/\psi - \overline{D} D^* - \rho \eta_c$ coupled-channel potential and reproduced the experimental line shape. But they concluded that the Zc state is better understood as a threshold cusp rather than a conventional resonance. The off-diagonal channel-channel interactions play an important role.

Formalism-Three-body Coupled channel model

Three channels $\overline{D}D^*$, $J/\psi\pi$, $\eta_c\rho$

$$H = H_0 + H_I$$
$$v = \sum_{\alpha,\beta} |\alpha(k_\alpha)\rangle v_{\alpha,\beta} \langle \beta(k_\beta)|$$

$\overline{D}D^* \rightarrow \overline{D}D^*$

The interaction determined by Tcc

$$\begin{split} & \text{Heavy Quark Symmetry} \\ & H_{a}^{(\bar{Q})} \equiv C \left(\mathcal{C} H_{a}^{(Q)} \mathcal{C}^{-1} \right)^{T} C^{-1} = \left[P_{a\mu}^{(\bar{Q})*} \gamma^{\mu} - P_{a}^{(\bar{Q})} \gamma_{5} \right] \frac{1-\not{\nu}}{2} \\ & \bar{H}_{a}^{(\bar{Q})} \equiv \gamma_{0} H_{a}^{(\bar{Q})\dagger} \gamma_{0} = \frac{1-\not{\nu}}{2} \left[P_{a\mu}^{(\bar{Q})*\dagger} \gamma^{\mu} + P_{a}^{(\bar{Q})\dagger} \gamma_{5} \right] \\ & \tilde{P} = (\bar{D}^{0}, D^{-}, D_{s}^{-}) \& \tilde{P}^{*} = (\bar{D}^{*0}, D^{*-}, D_{s}^{*-}) \\ & \mathcal{L}_{MH^{(\bar{Q})}H^{(\bar{Q})}} = ig \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} \gamma_{\mu} \gamma_{5} A_{ab}^{\mu} H_{b}^{(\bar{Q})} \right] \\ & \mathcal{L}_{VH^{(\bar{Q})}H^{(\bar{Q})}} = -i\beta \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} v_{\mu} \left(V_{ab}^{\mu} - \rho_{ab}^{\mu} \right) H_{b}^{(\bar{Q})} \\ & \overline{D^{(*)}\overline{D^{(*)}}} + i\lambda \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} \sigma_{\mu\nu} F_{ab}^{\prime\mu\nu}(\rho) H_{b}^{(\bar{Q})} \right] \end{split}$$

Only one free

parameter g'

Formalism-Feynman digrams

Formalism-Feynman digrams

Data Fit- $D^{*-}D^{0}\pi^{+}$

中国科学院大学

University of Chinese Academy of Sciences

- 1. Cascade decay dominated Fig.(c)
- 2. The threshold peak from the interference between (c) and (a)
- 3. The background play important at higher invariant mass of $D^{*-}D^{0}$

Data Fit- $J/\psi\pi^-\pi^+$

 π^{-}

中国科学院大学

University of Chinese Academy of Sciences

(d)

(c)

 π

(b)

(a)

- 1. Peak from Triangle Loop
- 2. Fig(a-c) is not important
- 3. The background give the bump

 $\overline{D^*}^0 / D^{*+}$

Data Fit- $\eta_c \rho^- \pi^+$

1. Data very limit

University of Chinese Academy of Sciences

- 2. Peak is mainly from Fig.(b)
- 3. No background considered

Data Fit- $\eta_c \rho^- \pi^+$

- 1. Data very limit
- 2. Peak is mainly from Fig.(b)
- 3. No background considered

- 1. Why are two-particle loops similar as Fig (a) not important ?
- 2. How is the contribution of Kinematical effect from Triangle loop ?
- 3. How is the contribution of the re-scattering T matrix ?

Data Fit-Two-body Loop

Since the scattering(Fig.b) is much weaker than direct decay (Fig.a). If we insist the contribution from Fig.b/c for $J \setminus \psi \pi \pi$ dominate, it will ask for Fig.a for $\overline{D}D^*\pi$ too large!

Coupled channel Constrain !

A more comprehensive framework for systematically describing hadrons

Data Fit- Kinematical effect from Triangle loop

The Kinematical effect from Triangle loop plays the role, but not full reason !

Data Fit- re-scattering T matrix

中国科学院大学

University of Chinese Academy of Sciences

The threshold cusp is clear, which should play important contribution for the peak!

Pole Position

Finite volume spectra

The points are all close to the free energy, which is also consistent with existed lattice data, and also consistent with our interpolation of the peak structure.

> The method please see Kang Yu's Post!

Summary

- We build a three channels model for Zc(3900).
- We symmetrically analysis three reactions, and nice describe the invariant mass spectra of $\overline{D}D^*$, $J/\psi\pi$, $\eta_c\rho$.
- We find that the peak around 3900 MeV could be explained as threshold cusps mainly because of triangle loop.
- The kinematical effect from triangle loop just enhance the cusp from the re-scattering T matrix from the three channels model.

Outlook

Weak Point

- Unknown Background !
- No $Y \overline{D}D^*$ and $Y J/\psi X$ contribution !

--- Three body unitary model ?

--- Too many parameters ?

--- More experimental data and Lattice inputs !

• By using the current model, we want to analysis more data at different energies.

Thanks for attention

