Investigation of pion-nucleon contributions to nucleon matrix elements

arXiv:2408.03893

Constantia Alexandrou, Giannis Koutsou, <u>Yan Li</u>, Marcus Petschlies, Ferenc Pittler

长沙 2024年10月 第四届中国格点量子色动力学研讨会

Background

Nucleon structure: nucleon matrix elements

 $R_{\mathcal{O}} := \frac{\langle \mathcal{J}_N(t_{\text{sink}})\mathcal{O}(t_{\text{ins}})\mathcal{J}_N^{\dagger}(0)\rangle}{\langle \mathcal{J}_N(t_{\text{sink}})\mathcal{J}_N^{\dagger}(0)\rangle} \xrightarrow{\text{all } t \text{ well-separated}} \langle N|\mathcal{O}|N\rangle$

Time-dependence indicates contamination from excited states

Lowest excited state is a Nucleon-Pion state

Simulation details

Ensembles	Flavors	$N_L^3 \times N_T$	m_{π} (MeV)	$L \ ({\rm fm})$	$m_{\pi} L$	$N_{\rm cfg}$
cA2.09.48	2	$48^3 \times 96$	131	4.50	2.98	1200

- > Physical-point twisted-mass ensemble An ensemble with $m_{\pi} = 346$ was also studied (see preprint)
- > Interpolating fields used: $J_p; \quad J_{N\pi}^{1/2} = \sqrt{2/3} J_{n\pi^+} - \sqrt{1/3} J_{p\pi^0}$
- Generalized eigenvalue problem (GEVP)
 Do GEVP on 2pt functions
 - Use the results to improve 3pt functions

- **2pt functions and GEVP** > 2pt functions: $(\mathcal{J}_N \mathcal{J}_N^{\dagger}) \quad \langle \mathcal{J}_N \mathcal{J}_{N\pi}^{\dagger} \rangle \\ \langle \mathcal{J}_{N\pi} \mathcal{J}_N^{\dagger} \rangle \quad \langle \mathcal{J}_{N\pi} \mathcal{J}_{N\pi}^{\dagger} \rangle \end{bmatrix}$ $C_{ij}(t) = \langle \mathcal{J}_i(t) \mathcal{J}_i^{\dagger}(0) \rangle$
 - GEVP returns eigenvalues and eigenvectors:

$$C_{ij}(t)v_j^n = \lambda^n(t, t_0)C_{ij}(t_0)v_j^n$$

$$\lambda^n(t, t_0) = e^{-E_n(t-t_0)}, \quad v_j^n \mathcal{J}_j^{\dagger}(0) |0\rangle = |n\rangle$$

> We determine the optimal interpolating field: $\tilde{\mathcal{J}}_{N} |0\rangle = (\mathcal{J}_{N} + v_{N\pi}^{N} \mathcal{J}_{N\pi}) |0\rangle \propto |N\rangle$

We can use it to improve matrix elements:

$$\frac{\langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle}{\langle \mathcal{J}_N \mathcal{J}_N^{\dagger} \rangle} \xrightarrow{\text{GEVP improved}} \frac{\langle \tilde{\mathcal{J}}_N \mathcal{O} \tilde{\mathcal{J}}_N^{\dagger} \rangle}{\langle \tilde{\mathcal{J}}_N \tilde{\mathcal{J}}_N^{\dagger} \rangle}$$

4/ 16

t_0 dependence of GEVP

 $C_{ij}(t)v_i^n = \lambda^n(t,t_0)C_{ij}(t_0)v_j^n$

ALPHA Collaboration JHEP04(2009)094

- \succ E_{eff} are not sensitive to t_0
- \succ Eigenvectors are sensitive to t_0
- \succ With small t₀, it converges to a wrong value
- > In this work, we fix $t t_0$, and do plateau fits to determine eigenvectors

GEVP results

p = (0, 0, 1):
 3 interpolators
 N(1), N(1)π(0), N(0)π(1)

t [fm]

Filled points: best fits

t_{min} [fm]

3pt functions and GEVP improvement

$$\frac{\langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle}{\langle \mathcal{J}_N \mathcal{J}_N^{\dagger} \rangle} \xrightarrow{\text{GEVP improved}} \frac{\langle \tilde{\mathcal{J}}_N \mathcal{O} \tilde{\mathcal{J}}_N^{\dagger} \rangle}{\langle \tilde{\mathcal{J}}_N \tilde{\mathcal{J}}_N^{\dagger} \rangle} \longrightarrow \begin{bmatrix} \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle & \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle \\ \langle \mathcal{J}_N \pi \mathcal{O} \mathcal{J}_N^{\dagger} \rangle & \langle \mathcal{J}_N \pi \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle \end{bmatrix}$$
$$\tilde{\mathcal{J}}_N = \mathcal{J}_N + v_{N\pi}^N \mathcal{J}_{N\pi}$$

- > We compute everything except $\langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle$
- RQCD: Last term is subleading by ChPT

Barca, Bali, Collins PRD 107, L051505 (2023) Bar PRD 99, 054506 (2018) and 100, 054507 (2019)

> This work:

We found a new method that doesn't require such term

Topologies

Not done

New method

- > 3pt function without GEVP: $I_0 = \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle$
- $\succ \text{ Fully GEVP improved 3pt function:} \\ I = \langle \tilde{\mathcal{J}}_N \mathcal{O} \tilde{\mathcal{J}}_N^{\dagger} \rangle = v_{N,N} v_{N,N}^* \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle + v_{N,N} v_{N,N\pi}^* \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle \\ + v_{N,N\pi} v_{N,N}^* \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_N^{\dagger} \rangle + v_{N,N\pi} v_{N,N\pi}^* \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle$
- New method:

1

New method

- > 3pt function without GEVP: $I_0 = \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle$
- $\succ \text{Fully GEVP improved 3pt function:} \\ I = \langle \tilde{\mathcal{J}}_N \mathcal{O} \tilde{\mathcal{J}}_N^{\dagger} \rangle = v_{N,N} v_{N,N}^* \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_N^{\dagger} \rangle + v_{N,N} v_{N,N\pi}^* \langle \mathcal{J}_N \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle \\ + v_{N,N\pi} v_{N,N}^* \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_N^{\dagger} \rangle + v_{N,N\pi} v_{N,N\pi}^* \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle$
- New method:

$$I_{d} = d_{N,N} v_{N,N} v_{N,N}^{*} \langle \mathcal{J}_{N} \mathcal{O} \mathcal{J}_{N}^{\dagger} \rangle + d_{N,N\pi} v_{N,N} v_{N,N\pi}^{*} \langle \mathcal{J}_{N} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle + d_{N\pi,N} v_{N,N\pi} v_{N,N}^{*} \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N}^{\dagger} \rangle + 0 \times v_{N,N\pi} v_{N,N\pi}^{*} \langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle$$

- Coefficients d can be determined by GEVP, do not depend on the insertion operator \mathcal{O}
- I_d can remove the leading contamination terms

$$R_{0} = \langle N | \mathcal{O} | N \rangle + a(e^{-\Delta E t_{\text{ins}}} + e^{-\Delta E (t_{\text{sink}} - t_{\text{ins}})}) + b e^{-\Delta E t_{\text{sink}}}$$

$$R = \langle N | \mathcal{O} | N \rangle$$

$$R_{d} = \langle N | \mathcal{O} | N \rangle - b e^{-\Delta E t_{\text{sink}}}$$

New method vs. others

Before GEVP: Open

After GEVP: Filled

$$I_d = d_{N,N} I_{N,N} + d_{N,N\pi} I_{N,N\pi} + d_{N\pi,N} I_{N\pi,N}$$

$$I' = I_{N,N} + I_{N,N\pi} + I_{N\pi,N}$$

$$I'' = I_{N,N} + I_{N,N\pi} + I_{N\pi,N} + I_{N\pi,N\pi}^{\text{disc}}$$

Overview of results

$(\vec{p}_{sink}, \vec{p}_{src}) = (\vec{0}, \vec{0}), (\vec{0}, \vec{1}), (\vec{1}, \vec{1})$

- We have investigated on 52 cases {u+d & u-d} × { $S, V_{\mu}, P, A_{\mu}, \sigma_{\mu\nu}$ } × {various kinematics}
- We include both connected and disconnected contributions for both isoscalar & isovector (disc u-d is nonzero for tmlQCD)

➤ 46 cases

- No significant changes observed
- > Including the sigma term $\sigma_{\pi N}$

▶ 6 cases: (u-d) × {P, A_{μ} }

- Isovector pseudoscalar (2) and axial (4) currents
- Significant changes observed
- Insertion operator has same quantum number with the pion

Pseudoscalar at 0 momentum transfer

- Converges to 0 (Parity symmetry)
- Before GEVP: Open
- ➢ After GEVP: Filled

Axial charge g_A^{u-d}

> Four cases for g_A^{u-d} Ratio (left) and two-state fits (right) =>

ETMC23: Band
 (Excited state analysis & continuum limit)
 PRD 109 (2024) 3, 034503

Small lattice artefact for g_A^{u-d}

- No changes for 3 cases
- GEVP brings 2nd case agreement with the other 3

This work: 1.258(18) Exp: 1.27641(56)

PCAC related quantities @ 1-unit transfer G_5^{u-d} , G_A^{u-d} , G_P^{u-d}

- Significant improvement observed for G₅^{u-d}, G_P^{u-d}
- Large lattice artefact expected for G_5^{u-d}
- Small lattice artefact for G^{u-d}_P after including the isovector insertion loop (nonzero for tmlQCD)

 Open: no GEVP
 Filled: GEVP

 Grey: ETMC23, PRD 109 (2024) 3, 034503

Conclusions

- > Strong t_0 dependence for GEVP eigenvectors
- > New method without requiring $\langle \mathcal{J}_{N\pi} \mathcal{O} \mathcal{J}_{N\pi}^{\dagger} \rangle$
- We investigate on 52 cases = 46 (no) + 6 (yes)
 - \succ 46 includes $\sigma_{\pi N}$
 - > 6 are with isovector pseudoscalar & axial currents
- Reduced lattice artefacts with isovector insertion loop

THANKS

Με τη συγχρηματοδότηση της Ευρωπαϊκής Ένωσης

Κυπριακή Δημοκρατία

Support is acknowledged from the project EXCELLENCE/0421/0043 "3D-Nucleon," cofinanced by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation

The other case for G_P^{u-d}

Topologies

Topologies

Not done

Statistics

Number	Subset	cA211.530.24	cA2.09.48	
$N_{ m cfg}$	all cases	2467	1228	
$N_{ m src}$	Ν	121	272	
	NJN	16	8	
	NJN (tensor)	4	1	
	Tri	96	16	
	B, W, Z	9	8	
	BWZ3pt (tensor)	3	4	
$N_{ m stoc}$	π^0	200	100	
	J	200	400	
	B, W	12	12	
$N_{\rm oet}$	P, JP, Z	1	1	

Isovector insertion loop: Form factors

Isovector insertion loop: PCAC ratio

22/16

Sigma term

π^0 -loop is necessary for isospin symmetry

