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QCD at a finite temperature/volume: different regimes

@ Scales:

Chiral symmetry breaking scale F
Goldstone boson mass M
Temperature T =1/L,

Box size L

@ Hadrons fit the box, EFT applicable: FL, FL;

@ Reordering of perturbation series: ,
o pregime: M~ T ~1/L e-regime /
o eregime: M« T ~1/L m / |
o J-regime: M~ T <« 1/L

p-regime

@ J-regime: applications
e QCD
e Condensed matter physics

Leutwyler (1987)
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p-regime: Chiral Perturbation Theory in a finite volume

e Lagrangian:
F? 4 6
L = - (0,00,UT + x U+ UxT) + 2@ + 2O 4

@ Discretized momenta in a box:

2
e Three-momenta: k = Tﬂ n, ncZ?

e Matsubara frequencies: kg = L—W ng, nog€7Z
t
@ Applications:
Exponentially suppressed finite-volume corrections to the masses, coupling

constants, matrix elements,. . .
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p-regime, ML > 1

@ Description of the scattering processes: scale separation

\Pin \Pout
— R —

L
e Non-relativistic EFT: R~1/Mand p~1/L — p/M<1
. . V2
o Lagrangian: Zyr = ¢! <,at ~ M ot > &+ coptdTpp + - -

o Antiparticles integrated out
e Particle number is conserved

@ Two- and three-body quantization condition, decay amplitudes,. ..
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e-regime

@ Scaless M < 1/Land M < 1/L;

@ Zero mode at:
n, = (ng,n) =0, M—0

@ A consistent perturbative expansion through:

Introducing a collective variable (net magnetization) and separating n, = 0 mode
by using the Faddeev-Popov trick (Hasenfratz and Leutwyler, 1989)
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)-regime

@ Asymmetric box: L < L;
@ Chiral limit at zero temperature: M — 0, Ly — oo and L finite

@ Zero mode at n = 0 and arbitrary ng

1/2
3 F213 -3)2 2( a2 2 2 ? 2 /
d°xZL = 2 Z(‘qn’ _Wn|qn‘ )7 w, = | M* + I n

n,a

The amplitude small |g2| < 1 for F2L3M > 1, violated at M — 0 (Leutwyler, 1987)

— The zero mode is non-perturbative
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Separating zero mode

e Non-linear O(N) o-model at M — 0:

F2
L= 5 0,5°0,5" +

_ / 255(5% — 1) exp (~A[S])

@ Time-dependent net magnetization as a collective variable:

1= / @m5N< o E / d®xS%(x, t))

m(t) = m(t)e*(t)  e*(t)=1
gm = [[m"(d)dm(t)de(t)
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Spontaneous symmetry breaking

@ Choosing direction:

e'(t)e'(t)

Q%(t) = e(r), Q) =-Q%(t) = €'(v), QU(t):5U_1+e°(t)

o Not unambiguous: Q — QY. 7, where X' n=n
@ Redefining field variables:

Sox) = Q¥(t)RY(x), R= (\/1 —R?, R)

/ 7R / Ped(e® —1)N ! < / d*xR(x, t)> exp (—A[QR])
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Propagator of the fast mode

. . §i dko® 1 eik(x—y)
RG)RI) = 2 / CANEES oS
F 27w L pr ks + k

— Zero mode is absent, owing to the condition
/d3fo(x, t)=0

— Zero mode becomes the collective variable e®(t)
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Finite-volume spectrum of the free Hamiltonian

2

Ly = % e (£)é%(t) + % 9, R(x)3,R(x)

rigid rotator oscillator

@ Two-point function of the zero mode

(e*(t)e*(0)) =Y e =I(0[e™(0)|n)(n|e*(0)|0) = e~=!"]

n(n+ N —2 o
En = n(n+ N =2) , © = F213 (moment of inertia)
20
<> There are no massless excitations in a chiral limit in a finite volume (Leutwyler, 1987)
N-—1
€1 = ===
EPTIE
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The spectrum in the moving frame

D(p, t) = / Pxe P (5%(x)S(0)) ~ e EPE ¢

If p=0, then E(p) = &1

If p# 0, then E(p) = |p|
Counting: p= O(1/L) and ¢, = O(1/L3)

The relativistic dispersion law

2

\/}mN’PH‘ ’ ’+

..is not fulfilled, 1 cannot be interpreted as the pion mass in a finite volume!
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Wick's theorem for the zero mode

(€ (t)eP () — /@e5(e2 ~1)exp (-? /dTé"(T)é"(T)) (1)’ (1)
ﬁ

e—cilti—to]

o If the unperturbed Lagrangian describes rigid rotator, Wick's theorem does not
work

(e (t)e™ (t)e™ (ts)e™(ta)) £ > (e™(t)e™(5)){e™(t)e™ (1))

perm jjk

— Insert full set of eigenstates between operators, evaluate matrix elements
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The Lagrangian and the counting rules

@ The Lagrangian used in the calculations at NNLO

F2

L= 0,505 — 0,0,5%9,5%9,5°9,S" — 1,0,5%0,5%9,5"9,S°

e Counting rules
e“~ 0(1), R~ O(1/L)
ore® = 0(1/L%),  9,R~ O(1/L?)
— Different power counting to the fast and zero modes!
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Green functions

(S%()S8(y)---) = /@Rd’v 1 </d3xR(x t)> Ped(e? 1)
exp <—F22 / d*z0,R(z)0,R(z) — % / dTéa(T)éa(T)>

fi-4 [ et +-} (5200500 )

@ Evaluate path integrals over R, using Feynman diagrammatic technique,

X

X

o Calculate matrix elements containing Q%
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Breakdown of the counting rules

@ Different scaling of momenta:

po ~1/L (fast mode), po~1/L3 (zero mode)

[ Ly 1
“) 2 B (G k(o — ko) K)

@ In order to restore power counting, a field transformation Q — QY. 7 was used,
which removes the QRR vertex from the Lagrangian (Hasenfratz & Niedermayer, 1992)
@ Systematic power counting at higher orders?
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Threshold expansion

@ Expand integrands of all Feynman integrals:
dko 1 1 2p0k0 — kg
= [ 220 — S| 270 "0
/zw L3kzﬂ(k§+k2)2< * K2+ k2 *
—_———

power corrections in 1/L

Reproduces the results of Hasenfratz & Niedermayer (1992) up to and including NNLO

No field transformations are necessary. The result does not change under field
redefinitions

Can be systematically pursued at any order in the 1/L expansion

17/22



Calculations at the NNLO: the Lagrangian

F2 . . . F2 . ... .
L= 5 T'R'RI+ — NR'RI = FPA'RPR' + g — 4l b{ R'R/ — 26,65 R'R) + -

where
M = —glevé +Q¥QY
QUQY — QUQY
N Qa0Qai _ Qaiqad
bl = Q0QYQPQH
by = QQ0QQY 1+ Q00 QY
“% = (RO,R)

>
(=i
I
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Calculations at the NNLO: the diagrams

@ Agrees with Hasenfratz & Niedermayer (1992) up to and including NNLO:

C C C
e = F23 <1 + (FL1)2 + (Ff)4 + (Ff)4 In(FL))
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Calculations of the matrix elements: zero mode

/@e 5(e? — 1) exp (—;) /dTéO‘(T)éO‘(T)> O1(e(t1)) - Om(e(tm))
_ Z e—a,,l(tl—tg)_..._g,,m_l(tm_l—tm)<0‘Ol|n1> . <nm—1|0m‘0>

N nm—1
for t1 > to >+ > tn.
@ Matrix elements are expressed through integrals over hyperspheric functions

(n|O]n') = / dQ Yi(€)0(e) Yar(e)

where

eO:cosel, elzsin01c0592,---

dQy = (sin61)V % -sinOy_odb; - - - dOy_odp
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Renormalization

@ Do the counterterms that are already present in the Lagrangian, remove all

ultraviolet divergences despite splitting off the zero mode? Yes!
—> Divergences arise only in the Feynman integrals of the fast modes which have the
same structure as in the infinite volume v
— The sums over the rotator eigenstates are all convergent v
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Conclusions & outlook

@ A consistent perturbation theory has been formulated in the §-regime

o No need for the field transformation. The result is invariant under field redefinitions
e Power-counting rules are restored by using the threshold expansion

@ OQutlook: Finite-volume artifacts in various lattice models of the condensed-matter
physics:
e Undoped antiferromegnets
@ Outlook: Hole-doped antiferromagnets
e Similar to Baryon Chiral Perturbation Theory, interplay of multiple scales
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