

Extracting ρ meson from Lattice at the physical mass and continuum limit

Zheng-Li Wang

University of Chinese Academy of Sciences Cooperator: Derek B. Leinweber, Chuan Liu, Liuming Liu, Peng Sun, Anthony W. Thomas, Jia-jun Wu, Hanyang Xing, J Kang Yu

Motivation

• Study the m_{π} dependence of ρ -meson properties using Hamiltonian Effective Field Theory (HEFT) by the spectra from lattice QCD

$$m_{\rho} = c_0 + c_1 m_{\pi}^2 + \xi a^2$$

- Same a, different m_{π} , $\sqrt{}$
- Same m_{π} , different a, ?

Configurations

Name	Volume	Spacing	β	m_{π}/MeV	$m_{\pi}L$	0.052	0.077	0.105	200
C24P29	$24^{3} \times 72$	0.10530 <i>fm</i>	6.20	292	3.75	64	48	32	300
C32P29	$32^{3} \times 64$			292	5.01				000
C32P23	$32^{3} \times 64$			228	3.91		48	32 48	220
C48P23	$48^{3} \times 96$			225	5.79				
C48P14	$48^{3} \times 96$			135	3.56			48	135
F32P30	$32^3 \times 96$	0.07746 <i>fm</i>	6.41	303	3.81				π mass
F48P30	$48^{3} \times 96$			303	5.72				
F48P21	$48^{3} \times 96$			207	3.91			<	
H48P32	$48^{3} \times 144$	0.05187 <i>fm</i>	6.72	321	4.06			Spacing	I

Zhi-Cheng Hu, et al., Phys.Rev.D 109 (2024) 5, 054507

Spectroscopy on lattice

• Build large basis of operators $\{\mathcal{O}_1, \mathcal{O}_2, ...\}$ with desired quantum numbers, construct the matrix of correlation function:

$$C_{ij} = \left\langle 0 \Big| \mathcal{O}_i \mathcal{O}_j^{\dagger} \Big| 0 \right\rangle = \sum_n Z_i^n Z_j^{n^*} e^{-E_n t}$$
 $ho, \pi\pi, \pi\omega, K\overline{K}, ...$

• Solve the generalized eigenvalue problem(GEVP):

• Eigenvalues:

Scattering on lattice

M. Lüscher, Nucl. Phys. B354, 531(1991)

University of Chinese Academy of Sciences

Operators

$[000]T_1^-$	$[001]A_1$	$[001]E_2$	$[011]A_1$
$ ho_{[000]}$	$ ho_{[001]}$	$ ho_{[001]}$	$ ho_{[011]}$
$\pi_{[001]}\pi_{[00-1]}$	$\pi_{[000]}\pi_{[001]}$	$\pi_{[0-10]}\pi_{[011]}$	$\pi_{[000]}\pi_{[011]}$
$\pi_{[011]}\pi_{[0-1-1]}$	$\pi_{[0-10]}\pi_{[011]}$	$\pi_{[0-1-1]}\pi_{[111]}$	$\pi_{[-100]}\pi_{[111]}$
$\pi_{[111]}\pi_{[-1-1-1]}$	$\pi_{[-1-10]}\pi_{[111]}$		$\pi_{[01-1]}\pi_{[002]}$
	$\pi_{[00-1]}\pi_{[002]}$		
$[011]B_1$	$[011]B_2$	$[111]A_1$	$[002]A_1$
$ ho_{[011]}$	$ ho_{[011]}$	$ ho_{[111]}$	$ ho_{[002]}$
$\pi_{[010]}\pi_{[001]}$	$\pi_{[-100]}\pi_{[111]}$	$\pi_{[000]}\pi_{[111]}$	$\pi_{[000]}\pi_{[002]}$
$\pi_{[110]}\pi_{[-101]}$	$\pi_{[110]}\pi_{[-101]}$	$\pi_{[100]}\pi_{[011]}$	
$\pi_{[0-11]}\pi_{[002]}$		$\pi_{[200]}\pi_{[-111]}$	

 $\rho, \pi\pi, \pi\omega, K\overline{K}, \dots$

Variational analysis: P000/T1u

P000,T1u

Totally, we have 9 different configurations, and 8 different spectra for each configuration with different total momentum and irreps, including $|p|^2 = 0$ only T_1^- , $|p|^2 = 1$ with A_1 and E_2 , $|p|^2 = 2$ with A_1 , B_1 and B_2 , and $|p|^2 = 3$ and 4 only with A_1 irreps.

25

25

30

We should mention that since the operator basis we have used does not sample well the inelastic spectrum, we will restrict our analysis to the elastic region below $K\overline{K}$ and $\pi\omega$

Variational analysis: F48P30

F48P30

P011,B2

P000,T1u

P011,A1

0.20 0 5 10 15 20 T/a

$\begin{array}{c} 0 \\ 110 \\ \hline 100 \\ \hline 000 \\ \hline 000$		
0.60 to C48P23	0.60 to C48P14	0.8 to F32P30
0.35	0.55	0.7
0.50	0.45	0.6. ••••••••
¥ 0.45-	0.40-	
0.40	0.35	^{0.5}]
0.35	0.25	0.4-
0.30 0 5 10 15 20 25	0.20 0 5 10 15 20 25	0.3 0 5 10 15 20 25
0.60 to F48P30	0.60 to F48P21	0.60 5 H48P32

0.20

20 25

0.30

10 15 T/a

10 15 T/a

25

Finite volume spectra: P000/T1u

- 1. The ρ can decay in some lattice
- 2. The spectra above ρ lie above the free energy levels of $\pi\pi$, spectra below ρ lie below the free energy levels of $\pi\pi$
- 3. There is only one energy level between the two free levels of $\pi\pi$
- 4. Energy levels decrease as the size of the lattice L increases
- 5. The ρ is more likely to decay in moving systems
- 6. The energy levels farther from the mass of the ρ being near the free energy levels of $\pi\pi$

Finite volume spectra: F48P30

F48P30

- 1. The ρ can decay in some lattice
- 2. The spectra above ρ lie above the free energy levels of $\pi\pi$, spectra below ρ lie below the free energy levels of $\pi\pi$
- 3. There is only one energy level between the two free levels of $\pi\pi$
- 4. Energy levels decrease as the size of the lattice L increases
- 5. The ρ is more likely to decay in moving systems
- 6. The energy levels farther from the mass of the ρ being near the free energy levels of $\pi\pi$

Phase shifts from finite-volumn spectra

$$\det \left(M_{ln,l'n'}(k) - \delta_{ll'}\delta_{nn'}\cot(\delta_l) \right) = 0, \qquad \begin{aligned} \frac{d^2 \quad \Lambda, \mu \quad M_{11,11}^{\left(\vec{P},\Lambda,\mu\right)}}{0 \quad T_1^-, 2 \quad w_{0,0}} \\ 1 \quad A_1, 1 \quad w_{0,0} + 2w_{2,0} \\ 1 \quad A_1, 1 \quad w_{0,0} - w_{2,0} \\ 1 \quad E_2, 1 \quad w_{0,0} - w_{2,0} \\ 1 \quad E_2, 2 \quad w_{0,0} - w_{2,0} \\ 1 \quad E_2, 2 \quad w_{0,0} - w_{2,0} \\ 2 \quad A_1, 1 \quad w_{0,0} + \frac{1}{2}w_{2,0} + i\sqrt{6}w_{2,1} - \frac{\sqrt{6}}{2}w_{2,2} \\ 2 \quad B_1, 1 \quad w_{0,0} + \frac{1}{2}w_{2,0} - i\sqrt{6}w_{2,1} - \frac{\sqrt{6}}{2}w_{2,2} \\ 2 \quad B_2, 1 \quad w_{0,0} - w_{2,0} + \sqrt{6}w_{2,2} \\ 3 \quad A_1, 1 \quad w_{0,0} - i2\sqrt{6}w_{2,2} \end{aligned}$$

Assuming that all $\delta_{l\geq 3}$ are negligible

 $w_{j,s} =$

135

48

 $m_{
ho} = 716, \Gamma_{
ho} = 153$

1200

1400

1000

20

0 | 200

400

600

800

E_{cm}(MeV)

- 1. The lineshape of the phase shift from large lattice size are even more smooth since $m_{\pi}L$ is larger
- 2. There exists the jump of phase shift from 0 degree to 180 degrees

How important $m_{\pi}L$

Name	Volume	Spacing	β	m_{π}/MeV	$m_{\pi}L$
C24P29	$24^{3} \times 72$	0.10530 <i>fm</i>	6.20	292	3.75
C32P29	$32^3 \times 64$			292	5.01

How important $m_{\pi}L$

Name	Volume	Spacing	β	m_{π}/MeV	$m_{\pi}L$
C32P23	$32^3 \times 64$	0.10530 <i>fm</i>	6.20	228	3.91
C48P23	$48^{3} \times 96$			225	5.79

How important $m_{\pi}L$

Chiral extrapolation

$$m_{\rho} = c_0 + c_1 m_{\pi}^2 + c_2 a^2$$

 $m_{\rho} = 775.8(8.5) \text{MeV}, \quad \Gamma_{\rho}(m_{\rho}) = 160(10) \text{MeV},$

 $Z_{\rm pole} = 766.7(8.6) - i76.5(4.4) {\rm MeV}.$

Here we take $m_{\pi-phy} = m_{\pi^0} \sim 135$ MeV, because here we do not consider isospin breaking and π^{\pm} should suffer large effect from electromagnet interaction.

$ ho(770)$ T-MATRIX POLE \sqrt{s}	(761-765)-i(71-74) MeV	~
ho(770) MASS		
NEUTRAL ONLY, e^+e^-	775.26 ± 0.23 MeV	~
CHARGED ONLY, $ au$ DECAYS and e^+e^-	775.11 ± 0.34 MeV	~
MIXED CHARGES, OTHER REACTIONS	763.0 ± 1.2 MeV	~
CHARGED ONLY, HADROPRODUCED	766.5 ± 1.1 MeV	~
NEUTRAL ONLY, PHOTOPRODUCED	769.2 ± 0.9 MeV	~
NEUTRAL ONLY, OTHER REACTIONS	769.0 ± 0.9 MeV (S = 1.4)	~
$m_{ ho(770)^0} - m_{ ho(770)^\pm}$	-0.7 ± 0.8 MeV (S = 1.5)	~
$m_{ ho(770)^+} - m_{ ho(770)^-}$		~
ho(770) range parameter	$5.3^{+0.9}_{-0.7}{ m GeV}^{-1}$	~
ho(770) width		
NEUTRAL ONLY, e^+e^-	147.4 ± 0.8 MeV (S = 2.0)	~
CHARGED ONLY, $ au$ DECAYS and e^+e^-	149.1 ± 0.8 MeV	~
MIXED CHARGES, OTHER REACTIONS	149.5 ± 1.3 MeV	~
CHARGED ONLY, HADROPRODUCED	150.2 ± 2.4 MeV	~
NEUTRAL ONLY, PHOTOPRODUCED	$151.5^{+1.9}_{-2.1}$ MeV	~
NEUTRAL ONLY, OTHER REACTIONS	150.9 ± 1.7 MeV (S = 1.1)	~
$\Gamma_{ ho(770)^0} - \Gamma_{ ho(770)^\pm}$	0.3 ± 1.3 MeV (S = 1.4)	~
$\Gamma_{\rho(770)^+} - \Gamma_{\rho(770)^-}$	1.8 ± 2.1	~

Summary

- We have presented an investigation of the ρ properties using lattice QCD with $N_f = 2 + 1$ Wilson-Clover ensembles including three values of the lattice spacing and a range of pion mass values. Through the analysis of the lattice spectra of various different pion masses and lattice spacings, we obtain the pole position of ρ at physical pion mass and continuum limit simultaneously
- This is a good example demonstrating that QCD can accurately describe the properties of strong interaction-hadrons in the lowenergy region
- We will study the role of $K\overline{K}$ channel in future work

TTALL CONTRACTOR

and the second second

And Division