

Crossing-symmetric dispersive analyses for meson-meson scatterings from lattice QCD data

Xiong-Hui Cao (曹雄辉) Institute of Theoretical Physics, Chinese Academy of Sciences

第四届中国格点量子色动力学研讨会

2024/10/11-10/14

Why lattice QCD?

Why lattice QCD?

XHCCrossing-symmetric dispersive analyses for meson-meson scatterings from LQCD data2024/10/143

πK scattering at $m_{\pi} = 391$ MeV

HSC, PRL (2014); PRD (2015); PRL(2019)

XHC

What is Roy or Roy-Steiner type equation?

Roy-Steiner type equations = Analyticity (Causality) + Crossing symmetry + Unitarity

Crossing-symmetric dispersive analyses

Renaissance caused by the development of χ PT S. Roy F. Steiner

G. Colangelo, et al., NPB (2001); B. Ananthanarayan, et. al., Phys. Rept. (2001); I. Caprini, et

- ππ
 al., PRL (2006); B. Moussallam, EPJC (2011); Garcia-Martin, et al., PRD (2011); PRL (2011); I. Caprini, et al., EPJC (2011); J. Pelaez, Phys.Rept. (2016); XHC et.al., PRD (2023); HSC, PRD (2024)...
 - P. Buettiker, et al., EPJC (2004); **S. Descotes-Genon, et al., EPJC (2006)**; J. Pelaez and A. Dedee, EPJC (2018); PDL (2020); Pby/e Poet (2020); J. Pelaez et al. PDL (2022)
- πK Rodas, EPJC(2018); PRL (2020); Phys.Rept. (2022); J. Pelaez et.al., PRL (2023)...
- C. Ditsche, et al., JHEP (2012); M. Hoferichter et.al., JHEP (2012); M. Hoferichter, et al., PRL 115, 092301(2015); PRL 115, 192301 (2015); Phys. Rept. (2016); PLB (2016); EPJA (2016); J. Ruiz de Elvira et.al., JPG (2018); M. Hoferichter, et al., PRL (2018); XHC, et.al., JHEP (2022); M. Hoferichter, et al., PLB (2024)...
 - $\stackrel{\circ}{\Rightarrow} \gamma \pi \to \pi \pi$: T. Hannah, NPB (2001); M. Hoferichter et.al., PRD (2012); $\gamma \gamma \to \pi \pi$: M. Hoferichter et.al., EPJC (2011); $\gamma^* \gamma^* \to \pi \pi$: M. Hoferichter and P. Stoffer, JHEP (2019)...

Example: $\pi\pi$ scattering at $m_{\pi} = 391$ MeV $\sigma/f_0(500)$

K-matrix analyses v.s. dispersive analyses

$\sigma/f_0(500)$

New σ pole positions via preliminary Roy equation analyses xHC et.al., PRD (2023); HSC, PRD (2024)

Numerical strategy to solve Roy-Steiner type equations

Roy-Steiner type equations

Roy-Steiner type equations

 $\frac{\eta(s)\sin 2\delta_{J}^{I}(s)}{2\rho(s)} = k_{J}^{I}(s) + \sum_{I} \sum_{J} \mathscr{P} \int_{4m^{2}}^{\infty} ds' K_{JJ'}^{II'}(s',s) \frac{1 - \eta(s')\cos 2\delta_{J'}^{I}(s')}{2\rho(s')}$

Infinite-dimensional, nonlinear, inhomogeneous T.P. Pool, Nuovo Cim. (1978) and (Cauchy) singular integral equations!

Nonlinear Fredholm integral equations of the second kind

- C. Pomponiu and G. Wanders, NPB (1976)
- D. Atkinson and R.L. Warnock, PRD (1977)
- L. Epele and G. Wanders, NPB (1978), PLB (1978)

J. Gasser and G. Wanders, EPJC (1999) G. Wanders, EPJC (2000)

Validity Domain of the partial wave amplitude

Theorem (Neumann expansion)

If f(z) is an analytic function inside an ellipse ${\mathscr C}$ with the focal points at

±1. Then the series
$$f(z) = \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(z)$$
 converges at the case of $z \subset \mathscr{C}$

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis

$$T(s, \cos \theta) = 16\pi \sum_{\ell=0}^{\infty} (2\ell + 1) T_{\ell}(s) P_{\ell}(\cos \theta)$$

The concept of "*partial wave amplitude*" only valid in a finite region of the complex s plane—validity domain

The range of validity domain is determined by the analytic domain of $T(s, \cos \theta)$ in terms of parameter $\cos \theta$

Analytic properties of $T(s, \cos \theta)$

Jost and Lehmann, Nuovo Cim. (1957) Dyson, Phys. Rev. (1958) Mandelstam, Phys. Rev. (1958); (1959) **Martin, (1969), Scattering Theory: Unitarity, Analyticity and Crossing**

Roy equation for $\pi\pi$ scattering

$$m_{\sigma} = 441^{+16}_{-8} \text{MeV}$$

 $\Gamma_{\sigma} = 544^{+18}_{-25} \text{MeV}$

I. Caprini, et al., PRL (2006)

Roy-Steiner type equations

 $m_{\kappa} = 658 \pm 13 \text{MeV}$ $\Gamma_{\kappa} = 557 \pm 24 \text{MeV}$

Descotes-Genon and Moussallam, EPJC (2006)

 $m_{N^*} = 918 \pm 3 \text{MeV}$ $m_{N^*} = 918 \pm 3 \text{MeV}$ $\Gamma_{N^*} = 326 \pm 18 \text{MeV}$ $\Gamma_{N^*} = 333$ **XHC**, Li and Zheng, JHEP (2022) Hoferich

 $m_{N^*} = 913.9 \pm 1.6 \text{MeV}$ $\Gamma_{N^*} = 337.7 \pm 6.2 \text{MeV}$

Hoferichter, et al., PLB (2024)

πK scattering at $m_{\pi} = 391$ MeV

The cut structure of the πK partial-wave amplitudes

t-channel $\pi\pi \to K\bar{K}$ partial wave amplitudes

t-channel Roy-Steiner equations as a Muskhelishvili-Omnes problem

 $\operatorname{Im} g_J^I(t) = \left[t_J^I(s)\right]^* \rho_{\pi\pi}(t) g_J^I(t)$

t-channel $\pi\pi \to K\bar{K}$ partial wave amplitudes

t-channel Roy-Steiner equations as a Muskhelishvili-Omnes problem

 $\operatorname{Im} g_J^I(t) = \left[t_J^I(s)\right]^* \rho_{\pi\pi}(t) g_J^I(t)$

Single-channel: Omnes solution,
$$\Omega_J^I(t) = \exp\left\{\frac{t}{\pi}\int_{t_{\pi}}^{t_m} dt' \frac{\phi_J^I(t')}{t'(t'-t)}\right\}$$

$$g_{J}^{I}(t) = \Delta_{J}^{I}(t) + t\Omega_{J}^{I}(t) \left[\frac{1}{\pi} \int_{t_{\pi}}^{t_{m}} dt' \frac{\Delta_{J}^{I}(t') \sin(\phi_{J}^{I}(t'))}{|\Omega_{J}^{I}|(t')t'(t'-t)|} + \frac{1}{\pi} \int_{t_{m}}^{\infty} dt' \frac{\left| g_{J}^{I}(t') \right| \sin(\phi_{J}^{I}(t'))}{|\Omega_{J}^{I}|(t')t'(t'-t)|} \right]$$
Crossing

s-channel πK scattering partial waves and *t*-channel $\pi \pi \to K \overline{K}$ partial waves where $I'J' \neq IJ$

Phase-shifts from $\pi\pi$ scattering: LQCD data + Roy eq. analyses XHC et.al., PRD (2023)

t-channel $\pi\pi \to K\bar{K}$ partial wave amplitudes

I t-channel solution from Roy-Steiner equations

s-channel $\pi\pi \to K\bar{K}$ partial wave amplitudes

dispersive analyses

Numerical strategy to solve Roy-Steiner type equations

M. Hoferichter, et al., Phys. Rept. (2016)

s-channel $\pi\pi \to K\bar{K}$ partial wave amplitudes

\mathbf{V} s-channel solution from Roy-Steiner equations

S-wave scattering lengths

Markov Two scattering lengths:

$$m_{\pi}a_0^{\frac{1}{2}} = 0.92^{+0.06}_{-0.28}$$
, $m_{\pi}a_0^{\frac{3}{2}} = -(0.32^{+0.05}_{-0.02})$

Dispersive determination of $\kappa/K_0^*(700)$ from LQCD data

XHC

Summary and outlook

The unity of dispersive techniques and lattice QCD data is powerful to investigate low energy hadron physics

Widely-used unitarization methods such as K-matrix, etc., are not good in light meson & baryon studies

Dispersive approaches, Muskhelishvili-Omnès formalism, Roy-Steiner type equations, etc. are necessary

 $\Box \pi D$ scattering at physical & unphysical m_{π} : $D_0^*(2300)$, two pole structure

 $\Box KN \& \bar{K}N$ scatterings: $\Lambda(1405)$, two pole structure and strangeness σ term

Dispersive determination of three-body resonances?

Validity Domain

