Status

Low mass Zprime :

- 2nd EB today
- > Unblinding approval next week.
- > Update the new signal modelling with different couplings
- > Update the theoretic unc.
- Update the final results with different couplings.

Quirk track:

- Prepare for submitting. (In April or May)
- Finish new scan with more dataset/epochs.

Shifts:

• GIT merge request review, Level 1

• 5 shifts now. 2 or 3 one week in the next two months.

Hardware:

• Build a framework for monitoring and recording data.

Narrow width Signal MC sample:

> 8 mass points has been studied: 35,40,45,50,55,60,65,70 GeV.

Two DM coupling are proposed:

 $> g_l = 0.01, g_q = 0.1$

 $> g_l = 0.1, g_q = 0.1$

> (The intrinsic width is smaller enough than the resolution of these benchmarking models)

New Signal MC sample:

- 2 mass points with different DM couplings: (45GeV, 65GeV)
 - $g_l = g_q = 0.1, 0.15, 0.2, 0.25, 0.3$

A convolution of BW and DSCB function for signals:

- Mass shape of benchmarking signals can be well modelled by the convolution:
- > Breit-Wigner: Γ is fixed to intrinsic width.

 $f(x) \propto \frac{1}{(x-\mu)^2 + \left(\frac{1}{2}\Gamma\right)^2}$

DSCB:

$$DSCB(x;\sigma,\alpha_L,n_L,\alpha_R,n_R) = \begin{cases} A_L \cdot (B_L - \frac{x}{\sigma})^{-n_L}, & \text{for } \frac{x}{\sigma} < -\alpha_L \\ \exp\left(-\frac{x^2}{2\sigma^2}\right), & -\alpha_L \leqslant \text{ for } \frac{x}{\sigma} \leqslant \alpha_R \\ A_R \cdot (B_R + \frac{x}{\sigma})^{-n_R}, & \text{for } \frac{x}{\sigma} > \alpha_R \end{cases}$$
$$A_i = \left(\frac{n_i}{|\alpha_i|}\right)^{n_i} \cdot \exp\left(-\frac{|\alpha_i|^2}{2}\right)$$
$$B_i = \frac{n_i}{|\alpha_i|} - |\alpha_i|$$

A convolution of BW and DSCB function for signals:

• Mass shape of benchmarking signals can be well modelled by the convolution:

Different mass with same couplings:

Same mass with different couplings:

2024/4/15

Continuous signal modelling for narrow width assumption:

- Interpolation by polynomial functions for various signal masses M_X .
- $\circ~\Gamma$ is fix to intrinsic width.
- The parameterization of the DSCB functions is following:
- $\mu(M_X) = 0.99629 \times M_X + 0.04976$ [GeV]
- $\sigma(M_X) = 0.01906 \times M_X 0.10887$ [GeV]
- $\alpha_{\rm L}(M_X) = -0.00757 \times M_X + 1.77064$
- $\alpha_{\rm R}(M_X) = 0.0045 \times M_X + 1.40536$
- $n_{\rm L}(M_X) = 0.00463 \times M_X^2 0.42245 \times M_X + 12.44857$
- $n_{\rm R}(M_X) = 150$
- It was noted that the extrapolation to the 35 GeV signal points is suboptimal in the plots.
- For $n_R(M_X)$, it is hard to be parametrize and has little impact to the fit performance, so we fix this parameter to the 150.
- > We checked that the signal mass shape modelling is still valid even with these suboptimal parameters and no impact in the signal extractions in the linearity study and spurious signal test.

2024/4/15

Qiyu Sha qsha@cern.ch

After applying continuous signal modelling:

>Only the performance of 35GeV not good enough, others are well fitted:

>And we check this deviation from the continuous signal modelling at 35GeV has no impact on the results

Figure 23: The distribution at 65 GeV Z' mass with different couplings: (a) $g_{\ell} = g_q = 0.15$; (b) $g_{\ell} = g_q = 0.20$; (c) $g_{\ell} = g_q = 0.25$; (d) $g_{\ell} = g_q = 0.30$. Using the fixed parameters come from the extrapolation.

Spurious signal and linearity test

Spurious signal and linearity test for new signal modelling with different couplings:

For different couplings(gl in the range 0.01–0.2), the ss unc. And linearity unc. is similar, so we use the unc from gl=0.1=gq(baseline)

Figure 61: The spurious signal yield as a function of Z' mass with different couplings(g_q fix to 0.10): (a) $g_\ell = 0.01$; (b) $g_\ell = 0.10$; (c) $g_\ell = 0.20$.

Figure 64: Fit response linearity in different Z' mass with different couplings(g_q fix to 0.10): (a) $g_\ell = 0.01$; (b) $g_\ell = 0.10$; (c) $g_\ell = 0.20$.

Figure 62: The compare plot of spurious signal yield as a function of Z' mass with different couplings(g_q fix to 0.10) after envelope: (a) $g_\ell = 0.01$; (b) $g_\ell = 0.10$; (c) $g_\ell = 0.20$.

Theroy unc. And updated results

• Theory uncertainty

- Theory uncertainty from QCD and PDF affects the final signal yields in two ways
 - Acceptance
 - Inclusive Cross section
 - We use k-factor from NLO to calculate the cross section.

Effect	QCD Scale	PDF
Acceptance	0.075	0.018
Inclusive	0.27	0.25

- Limit Setting with new samples which has widen width, scan gl in the range 0.01-0.2, fix the gq=0.1.
- The limit on the coupling gl (Considering the XS corresponding to the gl)

Quirk track

Different eff corresponding to the oscillation length d.

The number removed by red line will be updated soon.

TABLE I: Efficiency to reconstruct quirk tracks for various values of quirk mass (m_Q) , confinement scale (Λ), and number of tracking layers. We also calculate the mean Lorentz factor of the quirks $(\bar{\gamma})$ and the standard deviation $(\sigma(\gamma))$ in each of the generated datasets to calculate oscillation length d as calculated by [] which can be useful for understanding reconstruction efficiencies. See text for details

$m_Q \; (\text{GeV})$	$\Lambda(eV)$	$\bar{\gamma}$	$\sigma(\gamma)$	d [cm]	Efficiency
100	100	3.7	3.4	540	93.4%
	500			22	85.1%
	1000			5.4	80.8%
	5000			0.2	0%
500	100	1.8	0.6	800	85.4%
	500			32	72.9%
	1000			8	71.1%
	5000			0.3	0%
1000	100	1.4	0.3	800	93.7%
	500			32	48.7%
	1000			8	77.9%
5000	100	1.03	0.003	300	97.1%
	500			12	73.7%
	1000			3	68.0%

$$d_{cm} \approx 2 \operatorname{cm}(\gamma - 1) \left(\frac{m_Q}{100 \text{ GeV}}\right) \left(\frac{\text{keV}}{\Lambda}\right)^2$$