Regular lectures		Tools and methods Adv		vanced topics & project intro	
	Mon	Tue	Wed	Thu	Fri
Time	July 22	July 23	July 24	July 25	July 26
9:20-10:40		Disk Observations I	Disk dynamics and evolution	Planet Formation III (Formation of planets + pop synthesis)	Disk Observations II
11:00-12:20	Protoplanetary disk overview	Radiative transfer process	Planet Formation II (Accretion of planetesimal/pebble)	Planet Formation IV (Disk-Planet Interactions)	Special topics
12:20-14:00	lunch	lunch	lunch	lunch	lunch
14:00-15:20	Hydrodynamics	Grid-based method for gas and dust dynamics	N-body method	GPU computing	SPH/meshless method
15:40-17:00 (regular and advanced topics)	Planet formation I (dust coagulation & dynamics)	Magneto- hydrodynamics	Disk microphysics	Project introduction 1	Project introduction 2
					1

Lecture: Protoplanetary Disk Basics

- References
 - [Astrophysics of Planet Formation] by Philip J. Armitage, Chapter 2
 - Miotello+23 PPVII reviews, https://ui.adsabs.harvard.edu/abs/2023ASPC..534..501M/abstract
- A basic overview of protoplanetary disks
 - What is it
 - How does it look like
 - What is it made of
 - How is material distributed
- There are no stupid questions. If you find anything confusing, please ask questions.

Planet Formation

Initial Conditions

Protoplanetary disk 50 au

Final Products

Credit: Bill Saxton, NRAC

Two Main Avenues of Planet Formation I: Core Accretion (Bottom-Up)

um	dust μm direct coagulation	
mm / cm	pebble mm/cm streaming instability	
10-100 km	planetesimal 10–100 km planetesimal/pebble accretion	
>1000 km	protoplanet/embryo > 1000 km $M_c \sim 10 M_{\odot}$	
10 ⁴ -10 ⁵ km	With gas gas accretion	
terrestrial planet/super Earth 1-10 M _®	gas giant > 50 - 100 M_{\oplus}	Liu & Ji 2(

Core Accretion

6

Two Main Avenues of Planet Formation II: Gravitational Instability (Top-Down)

Stamatellos & Whitworth

Planet Formation

HL Tau

Dust Thermal Emission at 1 mm

Atacama Large Millimeter / submillimeter Array (ALMA)

ALMA Partnership, Brogan et al. 2015

Inclination: 48 degree

Millimeter Dust Emission / ALMA (Andrews+18)

Near-Infrared Scattered light / SPHERE (Avenhaus+18) 10

Imaged Planets in Protoplanetary Disks

VLT/SPHERE K-band (2.2 um) VLT/MUSE Hα (0.656 um)

Keppler et al. 2018 Muller et al. 2018 Wagner et al. 2018 Haffert et al. 2019 Hashimoto et al. 2020 ALMA Band 7 (0.9 mm)

Benisty et al. 2021 Isella et al. 2019

Protoplanetary Disks Dissipate in a few Million Years

What Are Disks Made of?

- Gas: ~99% of the mass; (almost) transparent
 - H_2 + He: 98% of the gas
 - CO, H₂O, etc: $\sim 1\%$
 - Gas opacity
- Dust: ~1% of the mass; main source of opacity*
 - Different size, composition, porosity, etc
- Magnetic field
- Planetesimals / planets

* https://en.wikipedia.org/wiki/Opacity

Ten ı M	Species		
Z \$	Element +	Mass fraction (ppm)	H ₂ O CO
1	Hydrogen	739,000	CO_2 CH_4
2	Helium	240,000	CH ₃ OH N ₂
8	Oxygen	10,400	NH ₃
6	Carbon	4,600	H_2S
10	Neon	1,340	NH ₃ ·H ₂
26	Iron	1,090	H_2S^{\star}
7	Nitrogen	960	CO*

Table 2 Condensation Temperatures of the Major Volatiles in Disks							
Species	$T^a_{\rm cond}$ E_b Cometary Abundance(K)(K)% of H2O		References				
H ₂ O	128–155	5165	100	1, 5			
CO	23–28	890	0.4–30	1, 5			
CO_2	60-72	2605	2-30	1, 5			
CH_4	26–32	1000	0.4–1.6	2, 5			
CH ₃ OH	94–110	4355	0.2–7	1, 5			
N_2	12–15	520		2, 5			
NH ₃	74–86	2965	0.2–1.4	1, 5			
HCN	100-120	4170	0.1–0.6	3, 5			
H_2S	45–52	1800	0.1–0.6	4, 5			
NH ₃ ·H ₂ O	78–81			6			
H_2S^{\star}	77–80			6			
CH_4^{\star}	55-56 (69-72)			6, 7			
CO*	45-46 (58-61)			6, 7			
N_2^{\star}	41–43 (55–57)			6			

Zhang et al. 2015

Fundamental Properties of Protoplanetary Disks

- 1. Total disk mass (gas / dust)
- 2. Disk size
- 3. Material distribution (radial / vertical / gas / dust)
- 4. Temperature structure (radial / vertical)

Total Dust Mass

Flux to dust mass conversion assuming optically thin disks

$$F_{\nu} = \frac{B_{\nu}(\bar{T}_{\rm d})\,\bar{\kappa}}{d^2}\,M_{\rm dust},$$

Tychoniec+20

Fig. 4: Cumulative distribution function of dust disk masses and solid content of exoplanets. *Top*: Cumulative distribution function of dust masses for Class 0 (red) and Class I (blue) disks in Perseus and Class II disks (yellow) in Lupus measured with ALMA (Ansdell et al. 2016). In black, the masses of the exoplanet systems are normalized to the fraction of the gaseous planets (Cumming et al. 2008). Perseus disk masses calculated with $\kappa_{9mm} = 0.28 \text{ cm}^2 \text{ g}^{-1}$ from the VLA fluxes. Medians are indicated in the labels. *Bottom*: Zoom-in to the ranges where ex-

Total Gas Mass

- H₂: (Almost) No emission in protoplanetary disks
- He: similar

Fig. 1 Schematic energy level diagram (not to scale) of molecular hydrogen. Five of the fifteen vibrational levels of the ground $X^1\Sigma_q^+$ electronic state are displayed. The UV pumping mechanism via the

 $B^1\Sigma_u^+$ and $C^1\Pi_u$ excited electronic states is illustrated.

Sternberg 1989

Energy

Total Gas Mass – Tracer / (Tracer / Gas)

- CO and isotopologues (CO / H_2 : ~ 10⁻⁴)
 - Pro: high abundance; easy access (many lines at mm wavelengths)
 - Cons: conversion factor uncertain due to freeze out, photodissociation, chemical reaction, and dust processing
 - 12CO often optically thick; need optically thin tracers

van der Marel + 15, 16

Total Gas Mass – Dynamical Mass Constraints

Total Gas Mass

Ansdell+16

Disk Size

TW Hya, Andrews + 20

Disk size distribution, mm continuum emission

Figure 10: Cumulative distributions of dust disk radii, as measured by the deconvolved major axis of a two-dimensional Gaussian fit to each source, for protostars in Orion, split between single protostars and multiples.

Tobin & Sheehan 2024

Radial Distribution of Material: Dust

$$I_{\nu} = B_{\nu}(T_{\text{dust}}) \left(1 - e^{-\tau_{\nu}}\right)$$

$$\tau_{\nu} = \Sigma_{\text{d}} \kappa_{\text{abs}}$$

Assuming optical depth $\tau_{\nu} \ll 1$

$$I_{\nu} = B_{\nu}(T) \tau_{\nu} = B_{\nu}(T) \Sigma_{\rm d} \kappa_{\rm abs}.$$

Radial Distribution of Material: Dust (HD 163296)

Radial Distribution of Material: Gas (IM Lup)

Temperature Structure in Protoplanetary Disks

Temperature Structure in Protoplanetary Disks

Temperature Structure in Protoplanetary Disks

