Planet formation I: dust dynamics and coagulation

Yaping Li (李亚平) Shanghai Astronomical Observatory

07/22/2024@原⾏星盘与⾏星形成暑期学校,2024

Outline

- Dust dynamics
- Dust coagulation
- Planetesimal formation

Main references:

- Armitage, P. J. 2020, Astrophysics of planet formation, Second Edition
- Lesur et al. 2023, PPVII, ch.13

Part I: dust dynamics

Planet formation: evolutions of solids

Aerodynamic coupling **Gravitational coupling**

ISM dust pebble planetesimal planet

 \sim 1 μ m \sim 10 cm \sim 1 km \sim 10⁴ km Opt/IR
mm: e.g. ALMA,
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
Kepler/TESS/...
_N ngVLA…

Dust size growth Accretion/migration

Planetesimal formation?

Aerodynamic drag on solid particles

Aerodynamic force for the particle with a velocity $\Delta \nu$ relative to gas Usually in the subsonic regime ($\Delta v < c_s$)

• Epstein drag (particle size $a \leq \lambda$, mean free path of gas; via collision): Collision rate from front side: $f_+ \simeq \pi a^2 (v_{th} + \Delta v) \frac{\rho_g}{\mu m_H}$

Collision rate from back side: $f_- \simeq \pi a^2 (\nu_{th} - \Delta \nu) \frac{\rho_g}{\mu m_H}$

Net drag force: $F_D \propto -a^2 \rho_g \ v_{th} \Delta v$

• Stokes drag ($a \geq \lambda$; via molecular viscosity): $F_D \propto -\frac{C_D}{2} \pi a^2 \rho_g \Delta \nu \Delta v,$

 $C_{\rm D} \simeq 24 \rm{Re}^{-1}$, Re < 1, $C_D \simeq 24 \text{Re}^{-0.6}$, $1 < \text{Re} < 800$, $C_{\rm D} \simeq 0.44$, Re > 800.

 \mathcal{C}_D depends on the Reynolds number Re = $2a\Delta \nu/\nu_m\;$ with $\nu_m=1/2\nu_{th}\lambda$ Epstein and Stokes drag transition around $a = 9/4\lambda$ Supersonic regime ($\Delta v > c_s$): $F_D \propto -a^2 \rho_q \Delta v^2$

Stopping time and Stokes number

Stopping time
$$
t_{\text{stop}} = \frac{mv}{p_g} \frac{F_D}{v_{th}}
$$

\nEpstein drag regime: $t_{stop} = \frac{\rho_s}{\rho_g} \frac{a}{v_{th}}$; for $a < 9/4\lambda$

\nStokes drag regime: $t_{stop} = \begin{cases} \frac{2 * \rho_s a^2}{9 v_{m} \rho_g} & \text{Re} < 1 \\ \frac{2^{0.6} \rho_s a^{1.6}}{9 v_{m}^0 \rho_g^{1.4} v_{th}^{0.4}} & 1 < \text{Re} < 800 \\ \frac{6 \rho_s a}{\rho_g v_{th}} & \text{Re} > 800 \end{cases}$

Dimensionless stopping time $\tau_{\rm stop} \equiv t_{\rm stop} \Omega_{\rm K}$ Stokes number: $St = t_{stop}/t_{eddy}$

For Epstein regime ($a < 9/4\lambda$), St = $\pi \rho_{S} a$ $2\Sigma_g$

Coupling strength between dust and gas

 $\tau_{stop} \ll 1$, strong coupling; $\tau_{\text{stop}} \gg 1$, decoupling; $\tau_{\rm stop} \sim 1$, marginally coupling;

Typical value: $t_{\text{stop}} \simeq 3 \text{ s}, \tau_{\text{stop}} \simeq 6 \times 10^{-7} (a/1 \mu m)$ $(\rho_g = 10^{-9} \text{g cm}^{-3}, \rho_m = 3 \text{ g cm}^{-3}, \nu_{th} = 10^5 \text{cm s}^{-1}, a = 1 \mu \text{m at Iau})$ For mm dust, $\tau_{\text{stop}} \simeq 10^{-3}$ at 1 au, $\tau_{\text{stop}} \simeq 0.1$ at 30 au $t_{\text{stop}} =$ $\overline{\rho_{\scriptscriptstyle S}}$ ρ_g \overline{a} v_{th}

Dust settling

• Vertical component of stellar gravity balanced by aerodynamic drag

$$
|F_{\text{grav}}| = m\Omega^2 z \iff |F_{\text{D}}| = \frac{4\pi}{3}\rho s^2 v_{\text{th}} v
$$

• Dust settling velocity and timescale $(t_{\text{settle}} = z/|\nu_{\text{settle}}|)$

$$
v_{\text{settle}} = \frac{\rho_{\text{m}}}{\rho} \frac{s}{v_{\text{th}}} \Omega^2 z \qquad t_{\text{settle}} = \frac{2}{\pi} \frac{\Sigma}{\rho_{\text{m}} s \Omega} \exp\left[-\frac{z^2}{2h^2}\right]
$$

- For $1\mu m$ dust particle at $z \sim h$ at 1 au, $v_{\rm settle} \simeq 0.06$ cm s⁻¹, and $t_{\rm settle} \simeq 1.5\times10^5$ yr \ll disk life time
- Settling is much faster at higher z (dependence on gas density ρ_g)

Dust settling with coagulation

Dust settling depends on its size, and the size will grow during settling.

$$
\frac{dm}{dt} = \pi s^2 |v_{\text{settle}}| f \rho(z),
$$

 v_{th}

 dt

With coagulation, particles settle to the disk mid-plane on
$$
\sim 10^3
$$
 yr – at least 10^2 faster than non-coagulation case. Caveats: no turbulence and fragmentation

 2^2z .

Dust settling with turbulence

Dust remain suspended in the presence of vigorous air currents

- Turbulence stirs up small solid particles and prevents them from settling into a thin layer at the disk mid-plane.
- Conditions for turbulence to stir up the dust -- dust diffusion time shorter than settling time

$$
t_{\text{diffuse}} = \frac{z^2}{D}, \qquad D \sim \nu = \frac{\alpha c_s^2}{\Omega}
$$

Minimum α for turbulence to oppose settling: $\alpha \gtrsim \frac{\pi e^{1/2}}{2}$.

 Σ_g with $\Sigma_{g} = 10^2 \text{g cm}^{-2}$, $\rho_m = 3 \text{ g cm}^{-3}$, $a = 1 \mu \text{m}$, $\alpha \gtrsim 10^{-5}$; a larger α needed to stir up larger particles

 $\rho_s a$

 $\overline{\alpha}$

 $t_{\text{stop}}\Omega$

• More formal condition (by solving advection–diffusion equation), $\frac{h_d}{h_d}$ $h_{\bf g}$ ≃

Dust radial drift (I)

• Gas rotates sub-Keplerian velocity due to pressure gradient

$$
v_{\phi,g} = v_{\rm K} (1 - \eta)^{1/2},
$$

with
$$
\eta = n c_s^2 / v_K^2
$$

$$
\frac{v_{\phi,\text{gas}}^2}{r} = \frac{GM_*}{r^2} + \frac{1}{\rho} \frac{dP}{dr}
$$

• Dust experiences head wind \rightarrow lost angular momentum \rightarrow drift inward

(Weidenschilling1977)

$$
v_{d,r} = \frac{v_{g,r} + 2St\Delta v_{g,\phi}}{1 + St^2}
$$

Dust drift towards higher pressure regions.

Dust radial drift (II)

• Drift is most efficient for particles with $St \simeq 1$

$$
v_{\mathrm{d},r} = \frac{v_{\mathrm{g},r} + 2\mathrm{St}\Delta v_{\mathrm{g},\phi}}{1 + \mathrm{St}^2}
$$

• At 5 au, with $\Sigma_g = 10^2$ g cm⁻², $H/R =$ 0.05 , $St \approx 1\frac{3}{2}a \approx 20$ cm ; typically in the range of ~ 10 $cm - a$ few m range meter-size barrier

Implications

- Planetesimal formation must be rapid
- Radial redistribution of dust is very likely to occur (e.g., dust disk size
smaller than gas disk)

Radial drift with coagulation/fragmentation

- With coagulation (only consider radial drift velocity): $\frac{dm}{dt} = \pi s^2 |v_r| f \rho_0,$
- Particles can grow before drift $(t_{\text{grow}} < t_{\text{drift}})$

$$
s \lesssim \frac{3f}{4\sqrt{2\pi}} \left(\frac{h}{r}\right)^{-1} \frac{\Sigma}{\rho_m}.
$$

This can be as large as 2 m ($\Sigma_{\rm g}=10^3~{\rm g~cm^{-2}},$ $H/R = 0.05, \rho_m = 3 \text{ g cm}^{-3}, f = 0.1$. Caveats: no fragmentation

• With coagulation/fragmentation: Most (~99%) of dust is depleted at ~Myr due to radial drift! Dust size cannot grow efficiently!

Dust trap by gaseous vortex/ring

 y (au)

100

 $50¹$

 Ω

 -50

 \rightarrow steep density gradient à**Rossby wave unstable**

 $t = 0$

 $r\Sigma_{\rm g},\ e=0.0,\ M_{\rm p}=5.0$ E-03, $t=0$

2D simulations of dust-gas dynamics

0.2 mm dust dust/gas $= 0.01$

4.8

 3.0

 2.4

1.8

 1.2 0.6 With dust feedback

Gas Surface Density

Observational implications

Ringed structures

Asymmetry

See also many other: AA Tau (Loomis+17), Elias 24 (Cieza+17; Cox+17; Dipierro+18), AS 209 (Fedele+18), GY 91 (Sheehan +18), V1094 Sco (Ansdell+18; van Terwisga+18), MWC 758 (Boehler+18, Dong+18), 16 disks (van der Marel+19), Long et al. (2018) ,DSHARP (Andrew et al. 2018)

Turbulent radial drift

• Turbulence does not alter the mean sub-Keplerian flow that is responsible for radial drift.

$$
\frac{\partial \Sigma_{\rm d}}{\partial t} + \nabla \cdot \mathbf{F}_{\rm d} = 0, \qquad \mathbf{F}_{\rm d} = \Sigma_{\rm d} \mathbf{v} - D \Sigma \nabla \left(\frac{\Sigma_{\rm d}}{\Sigma} \right).
$$
\n
$$
f = \frac{\Sigma_{\rm d}}{\Sigma}, \text{ with continuity equation for gas}
$$

• A competion between diffusion and radial advection, described by Schmidt number: $Sc\equiv$ $\boldsymbol{\mathcal{V}}$ $\frac{v}{D}$

 ν : gas kinematic viscosity, D: (particles) diffusion coefficient

Upstream diffusion is important for smaller Schmidt number $(Sc<0.33)$

Diffusion of large particles

For small particles ($\tau_{\text{stop}} \ll 1$), $D_{\text{p}} \simeq D_{\text{g}}$ and $Sc \simeq 1$. For large particles $(\tau_{\rm stop} \gg 1), \frac{D_{\rm g}}{D}$ $\overline{D}p$ $\sim \tau_{\rm stop}^2$ $D_{\mathbf{g}}$ $\overline{D}p$ $\simeq 1+\tau_{\rm stop}^2$ (Youdin & Lithwick 2007) $(D_{\rm g} \sim \nu \sim \alpha c_s H)$

Implications:

The radial diffusion is only important for relatively small particles

Dust distribution in protoplanetary disk

Miotello et al. 2023,PPVII, ch.14

Part II: dust coagulation

Particles growth via coagulation

- Grains stick together or fragment , depending on relative velocity.
- Dust size evolution governed by Smoluchowski equation: *(Smoluchowski 1916)*

$$
\frac{\partial n(m)}{\partial t} = \frac{1}{2} \int_0^m A(m', m - m')n(m')n(m - m')dm'
$$

- $n(m) \int_0^\infty A(m', m)n(m')dm',$

Reaction kernel: $P(m_1, m_2, \Delta \nu)$ probability for adhesion, $\Delta \nu$ relative velocity, $\sigma(m_1, m_2)$ cross section

 $A(m_1, m_2) = P(m_1, m_2, \Delta v) \Delta v(m_1, m_2) \sigma(m_1, m_2).$

Relative velocities

• Brownian motion

 $v_{ij}^{\text{rel},\text{brown}} = \min \left(\sqrt{\frac{8k_{\text{B}}T(m_i + m_j)}{\pi m_i m_j}}, c_{\text{s}} \right)$

• Vertical settling

$$
v_{ij}^{\text{rel,sett}} = \left\lfloor h_i \min\left(\text{St}_i, \frac{1}{2}\right) - h_j \min\left(\text{St}_j, \frac{1}{2}\right) \right\rfloor \Omega
$$

- Radial drift $v_{ij}^{\text{rel,rad}} = |v_{d,i} v_{d,j}|$
- Azimuthal drift

$$
\nu_{ij}^{\text{rel,azi}} = \left\lfloor \nu_{\text{drift}}^{\text{max}} \left(\frac{1}{1 + \text{St}_i^2} - \frac{1}{1 + \text{St}_j^2} \right) \right\rfloor
$$

• Turbulence motion (Ormel&Cuzzi, 2007; dominant) $\Delta v^2 \simeq 3/2 \alpha \tau_{\text{stop}} c_s^2$

Azimuthal Drift

Radial Drift

Brownian Motion

 10^{2}

Different relative velocity at 1 au

. Birnstiel et al. 2010; Stammler & Birnstiel 2022

Dust coagulation

Relative velocity $\Delta v > v_{\text{frag}}$ (fragmentation $velocity)$ \rightarrow fragmentation; Otherwise, sticking Many complications

- Outcome: Sticking, bouncing, erosion, mass transfer, fragmentation
- Composition of dust particles (silicates within snow line $(v_{\text{frag}} \sim 1 \text{m/s})$, outer region: water and CO ices ($v_{\text{frag}} \sim$ 10 m/s))
- Geometry of particles (porosity etc.),
- Fragment distribution, and temperature dependence of v_{frag} , coupled with disk evolution, etc...

Open code: DustPy by Stammler & Birnstiel (2022)
Windmark+12

Dust coagulation simulations

Credit: Linhan Yang using DustPy

Dust coagulation in ringed structures

- Most of dust (95%) and gas trapped in bump \rightarrow essential to retain dust mass/ size growth.
- A power-law distribution for dust in bump $\lceil n(a) \propto a^{-3.5} \rceil$
- Efficient size growth in bump, $a_{\text{max}} \sim$ 1 cm.
- **With dust trap**: global spectral index close to $\alpha_{\rm mm} \sim 2.5$.
- Need fragmentation velocity ~ a few m/s.

10 $²$ </sup>

 $10³$

 LYP et al. 2019a $\overbrace{\hspace{2.5cm}}^{\text{$F_{1\text{mm}}\,(\text{mJy})}}$

Dust size

Trapping

 10°

/

Planet-induced vortices with dust coagulation

- Dust size is quite non-uniform within vortex region
- Dust size growth facilizes the increase of dust/gas ratio.
- Vortex lifetime can be significantly impacted by dust feedback when coagulation included. LYP et al. 2020a

Ring morphology with dust coagulation

inner rings disappears due to dust coagulation and subsequent radial drift (if faster than gap opening timescale)

Laune et al. 2020

Part III: planetesimal formation

Gravitational collapse of planetesimals

Self-excited turbulence

But secular gravitational instability (e.g., Shariff & Cuzzi 2011;Youdin2011)

- Settling of dust increases the dust-to-gas ratio at the midplane
- Backreaction becomes stronger, modify gas v_{ϕ} for different z
- Vertical shear can be unstable to Kelvin-Helmholtz instability (KHI)
- Particles cannot settle into a very thin layer

Streaming instability (SI)

• Streaming instability can happen when two fluids (gas and solid particles) have a mutual velocity and interact via aerodynamic forces.

Dust concentration due to radial drift/settling \rightarrow backreaction to the gas stronger \rightarrow weaken the headwind \rightarrow reduce the radial drift, enhance the concentration

- Growth rate: on a time scale intermediate between dynamical and radial drift time scales.
- Consequence: small-scale particle concentration $(\ll h),$

part of a broad class of resonant drag instabilities (Squire & Hopkins 2018).

Youdin & Goodman, 2005; review by Lesur et al. 2023

Basic properties

- Efficiently concentration up to $10^3\rho_{\rm g}$
- Particle rings and spacings have width \lt 10% gas scale height

Bai & Stone, 2010a **Yang et al. 2017**

Condition for clumping

Condition for gravitational collapse: clump density exceeds Roche density $\rho_{\rm R}$.

$$
a_{\text{tidal}} = \frac{GM_*}{a^2} - \frac{GM_*}{(a+r)^2} \simeq \frac{2GM_*}{a^3}r \qquad a_{\text{grav}} \sim \frac{Gm}{r^2}
$$
\n
$$
r \lesssim \left(\frac{m}{M_*}\right)^{1/3} a \qquad \Rightarrow \qquad \rho > \rho_R \sim \frac{M_*}{a^3} = 6 \times 10^{-7} \left(\frac{M_*}{M_{\odot}}\right) \left(\frac{a}{au}\right)^{-3} \text{ g cm}^{-3}
$$

Enhancement of $\frac{\delta\rho_{\rm d}}{2} \sim 10^4$ are needed before gravitational collapse. $\rho_{\rm d,0}$

Planetesimal formation condition

- Need super-solar metallicity (Z) and marginally coupled dust (moderate τ_s)
- Smaller pressure gradient (smaller Π) is favored for clumping

Bai & Stone 2010c;

Streaming instability: clumping condition

Caveats: No turbulence Single dust species

Carrera et al. 2015; Yang et al. 2017; Li R. et al. 2021; review by Lesur et al. 2023

SI with external turbulence

• Linear analysis: turbulence suppresses linear growth of SI (Chen & Lin 2020; Umurhan et al. 2020)

Gole et al. 2020

• Confirmed by non-linear simulations (Gole et al. 2020)

SI with external turbulence: parameter survey

External turbulence significantly increases the critical value z_{crit}

Lim et al. 2024

Initial mass function of planetesimals

\n- Power-law distribution
$$
\frac{dN}{dM_p} \propto M_p^{-p}
$$
 with $p \simeq 1.6$
\n- Not sensitive to pebble size (τ_s) or solid abundance (Z)
\n

Johansen+ 2015; Simon et al. 2017; Abod et al. 2019;

Summary

- Dust particles experience radial drift.
- Dust size growth via coagulation: radial drift and fragmention barrier
- Planetesmial formation
	- Gravitational instability
	- Dust coagulation
	- Streaming instability