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Types of PDEs
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Hydro and MHD equations are a system of partial differential 

equations (PDEs).

Hydro/ideal MHD equations are hyperbolic PDEs, but source terms 

(resistivity/viscosity/self-gravity) can be of other types.

There are in general 3 types of PDEs. For a 2nd order PDE of the form 

it can be categorized based on the discriminant: 



Types of PDEs
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Prototype of elliptic PDE:

Poisson equation: (self-gravity)

Prototype of parabolic PDE:

Diffusion equation:
(viscosity, resistivity, 

heat conduction)

Prototype of hyperbolic PDE:

Wave equation:

Linear advection equation:



Outline

◼ Solving the linear advection equation

◼ Finite volume methods (for scalar conservation law)

◼ Godunov method for solving MHD equations
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Useful reference: Finite Volume Methods for Hyperbolic Problems, LeVeque, 

2002, Cambridge University Press.



Discretization
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Solving PDEs by grid-based methods inevitably involves discretization 

and use finite differencing to approximate time/spatial derivatives.

For simplicity, we focus on Cartesian grid with uniform grid spacing ∆x.

xi-1 xi xi+1

cell center 

coordinates

xi-1/2 xi+1/2

cell interface coordinates

physical quantities 

are stored at cell 

centers



The linear advection equation (const coeff)
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Consider linear advection eqs with constant A:

Solution:

The solution is constant along the 

ray (called the characteristic curve):

xX0

X(t)=X0+At

Proof:



The Riemann problem (for linear advection eq)
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uL uR

x=At

x=0

t

Initial condition:
u=uL, (x<0)

u=uR, (x≥0)

Result: discontinuity propagates along the characteristic curve.



Solve the linear advection equation on a grid
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1. Forward-time central-space (FTCS):

Initial condition: u=1 (x<50), u=0 (x>50), A=1.

The (finite-difference) 

method is unconditionally 

unstable!

1st order in time

2nd order in space



von Neumann stability analysis

9

Represent the discretized solution by a finite Fourier series (strictly speaking, 

this is appropriate only for linear problem in a periodic domain).

Pick up one mode of the form:

Solution at the next timestep is:

Ak: amplification factor (complex number)

For FTCS method, it is straightforward to obtain:

We see that no matter what timestep we choose, |Ak|>1. This means that the 

solution is exponentially amplified in time, being unconditionally unstable!



Lax-Friedrichs (LF) method
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IC: one Gaussian, one square waves, A=1, 

periodic BC.

The method is stable, but 

VERY diffusive!

Effectively, added numerical 

diffusion to stabilize FTCS. 



Upwind method
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IC: one Gaussian, one square waves, A=1, 

periodic BC.

The method is stable and 

less diffusive, though still 

only first order accurate.



Lax-Wendroff method
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IC: one Gaussian, one square waves, A=1, 

periodic BC.

Method is stable but:

1). Oscillatory solution 

at discontinuities.

2). Phase shift in the 

smooth region. 



Finite volume vs finite difference methods

◼ FVM works with the integral form of the conservation laws.
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Conserved variables are 

volume-averaged:

t

x
xi-3 xi xi+1xi-2 xi+2xi-1

real profile

finite difference 

representation

ui+1

FVM interprets 

grid discretization 

very differently.



Finite volume method

◼ FVM works with the integral form of the conservation laws.
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tn

tn+1

Conserved variables are 

volume-averaged:

Interface fluxes are 

time-averaged:

Finite volume update:

Conserved variables are conserved to machine accuracy.



How to compute the fluxes?
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tn

tn+1

We only know the volume-averaged values U. 

To get the flux at cell interfaces, we essentially need to know the value of 

u at xi+1/2 through some sort of averaging/interpolation. 

Alternatively, need to find ways to approximate interface fluxes directly.

Consider a general scalar conservation law:

This is the key to finite volume methods.



Linear advection equation
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tn

tn+1

Upwind flux:

For the linear advection equation, the aforementioned finite-difference 

methods can be given finite-volume interpretations:

For the upwind method:



Godunov method
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◼ 1. Given volume averaged values        (defined at each cell), 

reconstruct piecewise polynomial function            (defined at all x).

◼ 2. Using             as initial condition, evolve the hyperbolic 

equation exactly (or approximately) for Δt to obtain                .

◼ 3. Average                 over each cell to obtain new cell averages:

Simplest scenario (piecewise constant/donor cell):

(Basic idea) (Godunov, 1959)



Godunov method
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Reconstruct -> 

Evolve -> 

Average

For linear advection equations, Godunov method with piecewise 

constant reconstruction = upwind method.

(Basic idea)

A finite volume method originally proposed by Godunov (1959) for 

solving (non-linear) equations of gas dynamics.

Key property: flux is properly upwinded to avoid spurious oscillations.



Toward higher order accuracy
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x

u

i+1 i+2 i+3ii-1i-2

Piecewise linear reconstruction:

Evolve reconstructed profile according to the (linear advection) equation.

Can also be done at 

3rd order: Piecewise-

parabolic method 
(Colella & Woodward, 

1984) 

Volume average the evolved profile to the grid structure.  



Toward higher order accuracy
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How to choose the slopes? 

Equivalence of the Lax-Wendroff: 

overshoots => oscillations

x

u

i+1 i+2 i+3ii-1i-2

Simplest choice: 

This is in fact equivalent to the Lax-Wendroff method.

Need slope limiters so 

as to be “monotonicity 

preserving”



Solve the linear advection equation
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Higher-order Godunov method with piecewise linear reconstruction

Initial condition: one Gaussian, one square waves, A=1, periodic BC.

The method is stable and 

much more accurate:

2nd order accurate for 

smooth flow

1st order accurate at 

discontinuities.

+the MC slope limiter.



Non-linear scalar conservation law

22

To solve a non-linear scalar conservation law with Godunov method:

1. Given volume averaged values      , compute the left and right states 

UL,i-1/2/UR,i-1/2 at cell interfaces based on a reconstruction method.

x

u

i+1 i+2 i+3ii-1i-2

(same as in the linear problem)



Non-linear scalar conservation law
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2. However, one generally can no longer directly evolve the system. This 

is replaced by a Riemann solver.

with
u=uL, (x<0)

u=uR, (x≥0)

The key to a Riemann solver is to 

return the intermediate state u* so that 

the interface flux is given by: 

Fi+1/2=f (u*)

3. Apply the flux-differencing formula:

uL uR

xi-1/2

u *

(This approach automatically captures 

the shocks with dissipation)



Solving non-linear equations

◼ Simplest example: Burger’s Eqs
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In conservative form:

Solved with Godunov method + 2nd order reconstruction

Initial condition: u=1-sin(2πx)/2  in [0, 1], periodic BC. 



Hyperbolicity of linear systems

A linear system of the form

is hyperbolic if matrix A is diagonalizable with real eigenvalues.
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Let us denote the eigenvalues by

The matrix is diagonalizable if there is a complete set of eigenvectors such that

The right-eigenvectors jointly form a matrix:

where                                             .so that

In this way, the matrix A is diagonalized as:



Hyperbolicity of linear systems

A linear system of the form

is hyperbolic if matrix A is diagonalizable with real eigenvalues.
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This is a set of decoupled linear advection equations, with λp being wave speeds.

For any vector u, we can rewrite the original equation into:

By defining characteristic variables as                            , the linear system 

becomes

Or,

(p=1,2,…,m)



The Riemann problem (for a linear system)
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Initial condition:
u=uL, (x<0)

u=uR, (x≥0)

Solution:

uL uR

λ1

x=0

λmλ2

u1

u2 um-1

1). Decompose uL, uR into characteristic variables.

2). Each characteristic variable evolves according to its own characteristics.

if , otherwise,  

3). Convert back to original variables.



1D MHD Equations
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1D equations are plane-symmetric:                      =>

1D adiabatic MHD equations in conservative form:

7 variables, 7 waves
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MHD Riemann solvers are much more complex, and in some cases, 2 of 

the 3 waves are degenerate (i.e., not strictly hyperbolic).

The MHD Riemann problem

Goal: find the intermediate 

state at x=xi-1/2. 

In practice, HD/MHD Godunov schemes use approximate Riemann 

solvers and/or linearized Riemann solvers.



Sod shock tube
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Contact 

discontinuityRarefaction

shock

Experimental shock tube: two different gas states separated by a 

membrane at x=0 => special Riemann problem with ul=ur=0.

Solution generally gives a shock + contact disc. + rarefaction:

For other initial conditions, it is possible to obtain two shocks or two 

rarefactions. 



MHD Riemann solvers
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◼ The Roe solver

◼ The HLLE solver

◼ The HLLC/HLLD solver

Exact solver for linearized equation with an approximate intermediate state. 

Good resolution for all 7 waves, generally less diffusive and more accurate. 

Expensive. Inaccurate/fail at strong discontinuity/rarefactions.

Very simple and efficient; intermediate state is positive definite.

Very diffusive, especially at contact discontinuities.

Reasonably simple and efficient, guarantees positivity in 1D, better 

resolution at contact discontinuities.

Only consider the fastest/slowest waves with only 1 intermediate state.

Incorporate fast, Alfven waves and the contact discontinuity.



Primitive vs. conserved variables

32

It is necessary to convert conserved 

variables U to primitive variables W 

in various stages of the computation.

Caveat: Due to the approximate 

nature of the Riemann solver, 

one might get negative density 

after one step of integration.

one might obtain negative pressure 

following conversion from conserved 

to primitive variables.

Similarly, with

Solution: 

1). Add density/pressure floors.

2). Use a more diffusive solver.



MHD integrator

◼ Second-order accuracy can be achieved using predictor-

corrector type method (with a number of varieties).
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Step 1: Donor-cell reconstruction to obtain interface L/R states.

Step 2: Use a Riemann solver to compute 1st order fluxes Fn.

Step 3: Advance the system for ½ time step (predict step).

Step 4: Use the second-order (piecewise-linear) reconstruction to compute 

the L/R states from Un+1/2.

Step 5: Use a Riemann solver to compute 2nd order fluxes Fn+1/2.

Step 6: Update the system for a full time step.

This is one algorithm adopted in Athena++, following Falle (1991), modified from 

the MUSCL-Hancock (“van Leer”) schemes. 



The Courant-Friedrichs-Lewy (CFL) condition 

34xi-1 xi xi+1 xi-1 xi xi+1

When time step is appropriate (C<1) When time step is too large (C>1)

◼ A numerical method is convergent only if its domain of dependence 

contains the true domain of dependence of the PDE.

◼ In other words, the timestep Δt must be sufficiently small so that 

information propagates no more than one grid point per timestep.

For the linear advection problem                                   ,

,   where the CFL number C≤1.



The Courant-Friedrichs-Lewy (CFL) condition 

◼ Numerical timestep Δt must be sufficiently small so that information 

propagates no more than one grid point per timestep.
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Different MHD integrators may have different requirement on the CFL number, 

which can also depend on the dimension of the problem.

e.g., the van Leer integrator in Athena++ requires the CFL # to < 1 for 1D 

and <0.5 for 2D/3D problems.

For MHD equations, taking the fastest speed as:

where v is flow speed, vf is the fast magnetosonic speed, in each direction.

The timestep is given by: taken across the entire mesh



Boundary conditions (BCs)
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Boundary conditions are implemented by properly filling the ghost zones. 

Periodic and reflecting/conducting 

BCs are straightforward.

Needed only to help determine the 

L/R states at the boundaries (and 

reconstruct EMFs for CT). 

# of ghost zones depends on the 

order of reconstruction and numerical 

implementation (2 in Athena++). 

“zeroth-order extrapolation” generally 

gives best results serving for 

outflow/absorbing BCs
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