Grid Based Method for Gas and Dust Dynamics

Pinghui Huang (黄平辉)

原行星盘与行星形成暑期学校 北京, 2024/07/23

Observational Tracers & Substructures

van der Marel et al. 2020; Andrews & DSHARP 2018; Öberg & MAPS 2021

Observation & Simulation

Observational dust images and hydrodynamic simulations of HL Tau (Left) and MWC758 (right)

Observation & Simulation

Teague et al. 2019 combined the ALMA observational ¹²CO gas line emission (left) and 3D hydrodynamic simulation (right) to confirm the existence of **meridional flows** of HD 163296.

Three Fundamental Problems in Protoplanetary Disks

What are the mechanisms of accretion and dispersal; how is angular momentum transferred in protoplanetary disks?

Instabilities (Turbulence) Magnetorotational Instability Gravitational Instability Hydrodynamic Instabilities (Zombie Vortex Instability, Convective Overstability, Vertical Shear Instability)

Disk Winds

Photoevapation, Magneto-Centrifugal/Thermal Wind

Density Waves

Planets, Brown Dwarfs, Binaries, Vortices, Gravitational Instability

Lesur et al. 2022, PPVII chapter

Three Fundamental Problems in Protoplanetary Disks

How is dust accumulated and aggregated; how do the formations of planetsimals and planets start from dust?

From dust to pebble Dust Coagulation, Snow Lines, Pressure Maxima (planetary gap edges, dead zones edges, zonal flows, vortices, density waves)

From pebble to planetesimals Streaming Instability, Vertical/Self Gravity

From planetesimals to planets Planetesimal/Pebble Accretion, Core Accretion

Chiang & Youdin 2010

Three Fundamental Problems in Protoplanetary Disks

How do planets interact with disk (gas and dust) and other planets to end up in their final configurations?

Planet Migration (McNally et al. 2019a)

Circumplanetary Disks (Fung et al. 2019)

Substructures (HD 169142, Pérez et al. 2019)

Numerical Methods to Study Dust-Gas Mixture

Particles-Mesh Method (Pencil; FLASH; PLUTO; FARGO-ADSG; Athena; **Athena++, Chao-Chin Yang in prep.**)

- Catches the dynamics of dust more rigorously, particles can cross each other
- Code design and load unbalancing are more complex
- Challenging to implement two-way gas drag in a fully implicit manner, and to incorporate dust coagulation

Multi-Fluids Approach (PIERNIK; MPI-AMRVAC; LA-COMPASS; FARGO3D; Athena++, Huang & Bai, ApJS 2022)

- Applicable primarily for small and intermediate sized dust (tightly and marginally coupled dust), but will fail for crossing trajectories
- Easier for parallelization and load balancing
- Straightforward to be implemented fully implicit methods and dust coagulation
- Flexible sub-grid physics: can treat gas turbulence as dust diffusion when needed

Athena++

Athena++ is a complete re-write of the Athena astrophysical MHD code in C++ (Stone et al. 2020). It is a **shock-capturing Godunov code** implemented by **Finite Volume Method (FVM)**.

- Flexible Mesh Strutures and Coordinates
- Including more Capabilities and Physics
- Excellent Performance and Scalability

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 249:4 (40pp), 2020 July © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4365/ab929b

The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers

James M. Stone^{1,2,5}, Kengo Tomida^{3,6}, Christopher J. White⁴, and Kyle G. Felker^{2,7} ¹Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; jmstone@ias.edu ²Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA ³Department of Earth and Space Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan ⁴ Kavli Institute for Theoretical Physics, University of California Santa Barbara, CA 93107, USA *Received 2019 June 26; revised 2020 April 21; accepted 2020 May 11; published 2020 June 25*

Athena, an ancient Greek goddess with wisdom, warfare and handicraft. (This photo was taken in

Metropolitan Museum of Art)

Equations of Gas and Dust

Aerodynamic Drags and Stiff Regimes

The aerodynamic drag force (**velocity relaxation**) is:

$$\dot{v}(t) \propto rac{
ho_d}{
ho_g} rac{
ho_g -
ho_d}{T_s}$$

The analytical solution is:

 $v(t) \propto exp(\lambda t)$

The **stiffness** is caused by a Jacobian that possesses **eigenvalues** λ with large **negative real parts**. The solution has eigen modes varied with time dramatically.

$$|\Re e(\lambda)| \Delta t \geq 1$$

As a rule of thumb, the **drag will become stiff** when you have a small stopping time $T_s \leq \Delta t$ and a large dust-to-gas ratio $\rho_d / \rho_g \gg 1$.

Stiff Drags and Drag Integrators

Explicit drag integrators are unstable to the stiff drags.
 Semi-implicit drag integrators create artificial oscillations.
 Only fully implicit drag integrators are robust in stiff regimes.

Momentum Correction of Dust Diffusion

$$\mathscr{F}_{\mathrm{dif},n} \equiv -\rho_{\mathrm{g}} D_{\mathrm{d},n} \nabla \left(\frac{\rho_{\mathrm{d},n}}{\rho_{\mathrm{g}}} \right) = \rho_{\mathrm{d}} v_{\mathrm{d,dif},n} , \quad \text{(Cuzzi et al. 1993)}$$

The gas turbulent term on the dust continuity equation will **violate the Galilean invariance** of the system.

We add three terms on the momentum equations of dust:

$$\frac{\partial \rho_{d,n} \left(\boldsymbol{v}_{d,n} + \boldsymbol{v}_{d,\text{dif},n} \right)}{\partial t} + \nabla \cdot \left(\rho_{d,n} \boldsymbol{v}_{d,n} \boldsymbol{v}_{d,n} + \Pi_{\text{dif},n} \right) = \rho_{d,n} \boldsymbol{f}_{d,\text{src},n} + \rho_{d,n} \frac{\boldsymbol{v}_{g} - \boldsymbol{v}_{d,n}}{T_{s,n}} \\ \Pi_{\text{dif},n,ij} = \left(\boldsymbol{v}_{d,n,j} \mathscr{F}_{\text{dif},n,i} \right) + \left(\boldsymbol{v}_{d,n,i} \mathscr{F}_{\text{dif},n,j} \right) \\ \mathbf{Diffusive}_{\text{Velocity}} \quad \mathbf{Diffusion of}_{i-\text{momentum}} \\ \text{in j-direction} \quad \mathbf{Diffusive flux}_{in j-\text{direction}} \right).$$

2D Gaussian Dust Diffusion

Dust Diffusion Without Correction 20 15 ▶ 10 5 $T_s = 0.01, D_d = 1.0$ t = 0.0, v = 1.010 15 5 20 10 15 20 0 5 Х Х 1.4 1.8 2.0 2.2 1 2 0.6 1.6 3 4 5 0.8 1.0 1.2 6 ρ_d/ρ_g ρg

Without momentum correction, it creates **an asymmetric numerical artifact** in gas density. The **dust-gas system violates the Galilean invariance**.

2D Gaussian Dust Diffusion

With momentum correction, the circular gas and dust density patterns are well preserved. Dust diffusion **does not depend on the choice of reference frame**, so **it ensures the Galilean invariance**.

Streaming Instability (SI)

Streaming Instability is an axisymmetric dust-gas resonance drag instability. It creates strong dust concentration and is tightly related to the planetesimal formation (Youdin & Johansen; Johansen & Youdin 2007). The free energy of SI comes from the radial gas pressure gradient $\eta \equiv \frac{1}{2} \left(\frac{c_s}{p_y}\right)^2 \frac{d \ln P}{d \ln r}$.

SI and Dust Clumping

SI and Dust Clumping

SI and Dust Clumping

Vertical Shear Instability (VSI)

In hydrostatic equilibrium, protoplanetary disks generally have **vertical shear in rotation velocity** $\frac{\partial \Omega}{\partial z} \neq 0$, it can trigger **Vertical Shear Instability** (with **short thermal cooling**, $\tau_{cool} \ll \Omega_K^{-1}$). VSI is a disk variant of the **GSF Instability** in differentially rotating stars (Goldreich & Schubert 1967, Fricke 1968).

Height

1.0

1.2

1.4

Radius

1.6

1.8

for $k_R/k_z \gg 1$

- Creates modest turbulence to drive the accretion of disks.
- Leads to prominent vertical motion (body modes) and hence dust stirring.
- In 3D, produces **vortices** by secondary instability (Rossby Wave Instability).

Nelson et al. 2013

VSI with Dust Stirring

Rossby Wave Instability (RWI)

Leaking Rossby waves excite spiral density waves (Meheut et al. 2013)

RWI generates large scale vortices (Li et al. 2001)

ALMA dust continuum observation of IRS 48 (Yang et al. 2023a)

Rossby Wave Instability is a local non-axisymmetric instability, and is tightly related to the nonlinear regimes of VSI and Zombie Vortex Instability (ZVI). RWI happens in disks where there is a local maximum of $\mathcal{L}(r) = \frac{\Sigma S^{2/\gamma}}{2(\nabla \times u) \cdot \hat{z}}$, i.e., a local minimum of vortensity $\frac{(\nabla \times u) \cdot \hat{z}}{\Sigma}$ in barotropic disks. RWI creates large scale vortices to trap dust.

RWI with Dust Trapping

Planet-Disk Interaction

Planet excites density waves at Lindblad Resonance locations (Armitage 2007).

Asymmetries between inner and outer waves lead planets to migrate (F. Messet).

Combine different Fourier azimuthal modes, then we get **coherent spiral density waves induced by planets** (Bae & Zhu 2018).

JD Diamat Dial, Interaction with Duct

2D Planet-Disk Interaction with Dust

