Planet formation lecture II

Planetesimal accretion & pebble accretion

Beibei Liu

Zhejiang University

References

1.Lecture notes on the formation and early evolution of planetary system

Armitage Chapter III <u>https://arxiv.org/abs/astro-ph/0701485v6</u>

2. Planet formation theory in the era of ALMA and Kepler

Drazkowska et al. PPVII chapter, 2023

3. A tale of planet formation: from dust to planets

Liu & Ji, 2020

4. Planet formation: key mechanisms and global models

Raymond & Morbidelli, 2020

Outline

- 1. Introduction
- 2. Planetesimal accretion & pebble accretion
- 3. Single birth site + hybrid accretion model

Nebular hypothesis

cloud collapse

proto-star and protoplanetary disk

dust growth and planet formation

protoplanetary disk dispersal (a few Myr)

➡ final planetary system

Sketch of planet formation

Radial drift of dust

dust particle

Dust particles drift into the high pressure region of the disk.

Pebbles drift too fast

Planetesimals accretion

- Hill radius
- Gravitational focusing factor
- Runaway and oligarchic growth
- Isolation mass

Hill radius

Hill sphere (Roche radius): the region where the gravity of the planet is dominant over the gravity of the star.

$$\left(\frac{Gm}{R_{\rm H}^3}\right)^{1/2} \sim \left(\frac{GM}{a^3}\right)^{1/2} \sim \Omega$$
$$R_{\rm H} = \left(\frac{m}{3M}\right)^{1/3} a$$

Earth a = 1 AU, $R_H = 0.01$ AU Jupiter a = 5.2 AU, $R_H = 0.36$ AU

Two body interaction: gravitational focusing

Geometrical cross section of two bodies

$$\sigma_{\rm geo} = \pi (r_1 + r_2)^2$$

Gravitational focussing: the attracting nature of the gravity leads to an increased collisional cross section.

angular momentum conservation:

$$J = m_1 b v_\infty = m_1 (r_1 + r_2) v$$

Two body interaction: gravitational focusing

$$b^{2} = (r_{1} + r_{2})^{2} \left(1 + \frac{v_{esc}^{2}}{v_{\infty}^{2}}\right) \qquad v_{esc} = \left(\frac{2Gm_{2}}{r_{1} + r_{2}}\right)^{1/2}$$

It provides the collisional cross section:

$$\sigma_{col} = \pi (r_1 + r_2)^2 \left(1 + \frac{v_{esc}^2}{v_{\infty}^2} \right)$$
eometrical cross section

geometrical cross section gravitational focusing factor
$$\Gamma_g$$

 $\theta = \frac{v_{esc}^2}{2v_{\infty}^2}$ Safronov number (1969)

$$\theta \ll 1, \ \sigma \propto r_2^2$$
 Geometrical regime
 $\theta \gg 1, \ \sigma \propto r_2^4$ Gravitational focusing regime

$$r_1 \ll r_2$$

g

Growth rates

One big body accreting from a sea of small planetesimals.

$$\frac{dM}{dt} \sim \Sigma_s \Omega \pi r^2 (1 + \frac{v_{\rm esc}^2}{v_{\infty}^2})$$

Growth rates

One big body accreting from a sea of small planetesimals.

$$\frac{dM}{dt} \sim \Sigma_s \Omega \pi r^2 \left(1 + \frac{v_{\rm esc}^2}{v_{\infty}^2} \right)$$

- The velocity dispersion is the key factor. The gravitational focusing factor can be more complex in three-body case.
- The growth rate is higher in disks with larger planetesimal surface density.
- Since both surface density and angular frequency generally decreases with distance, the planet grows slower at large orbital distances.

Growth rates

Runaway growth: the bigger body, the faster it grows

$$\frac{1}{M} \frac{dM}{dt} \propto M^{1/3}$$

If M1>M2, then runaway means d(M1/M2)/dt>0

- bigger bodies + small planetesimal population.
- dynamical friction/equipartition of energy indicates that e and i of big body remain small, while e and I of small planetesimals are not affected by the growth of the big one.
- the escape velocity of big body increases due to mass growth, the gravitational focusing attracts more planetesimals and the big body grows faster.
- a positive feedback->runaway growth

Oligarchic growth

The growing bigger bodies have a feedback onto the random velocities of small ones. It gradually reduces the gravitational focusing factor.

The massive bodies grow slower than less massive bodies (still faster than planetesimals). Therefore, these embryos tend to grow towards similar masses (so called "oligarchy").

 $\frac{1}{M}\frac{dM}{dt} \propto \frac{1}{M^{1/3}}$

QA: What determines the random velocity of the small planetesimals?

Viscous stirring through gravitational scattering among planetesimals and embryos.

Damping by gas drag.

Dynamical friction: energy transfer from large bodies to small bodies.

Planetesimal isolation mass

feeding zone of the planet

The planet clears all the material in its feeding zone

1

0.0

0.1

1

a (AU)

10

$$\Delta a = f R_{\rm H} \propto M^{1/3}$$

$$M_{\rm iso} = \int_{a-\Delta a}^{a+\Delta a} 2\pi \Sigma_p(r) r dr$$
$$M_{\rm iso} = \frac{(4\pi f a^2 \Sigma_p)^{3/2}}{(3M_{\star})^{1/2}}$$

$$\Sigma_p(a) = \eta_{ice} \Sigma_0 \left(\frac{a}{1\text{AU}}\right)^{\alpha} \text{ g/cm}^2 \text{ with } \eta_{ice} = \begin{cases} 1 & \text{if } a < a_{ice} \\ 4 & \text{if } a \ge a_{ice} \end{cases}$$

For the MMSN, we have isolation mass of 0.05 Mearth at 1 AU and 2 Mearth at 5.2 AU.

This holds for circular orbits without orbital migration!

Pebble accretion

Pebble accretion: larger accretion radius

Pebbles mm-cm

gas drag + gravitational force

Ormel & Klahr 2010, Lambrechts & Johansen 2012, Morbidelli+2015, Levison+2015, Ida+2016, Xu & Bai 2017, Liu & Ormel 2018, Ormel & Liu 2018

Pebble accretion: larger accretion radius

 t_{stop} How fast particles adjust the moment to the gas $t_{\text{enc}} \sim b/v_{\infty}$ The duration of particle-planet encounter By the force balance, the particle would settle towards to the planet at a velocity $v_{\text{set}} = \frac{GM}{b^2} t_{\text{stop}}$ $t_{\text{set}} \sim \frac{b}{v_{\text{set}}} \sim \frac{b^3}{GM t_{\text{stop}}}$

Pebble accretion occurs1) $t_{set} < t_{enc}$ particles can settle during encounter2) $t_{stop} < t_{enc}$ drag is important during encounterEquation the settle time and encounter time can

get maximum accretion radius

$$b_{\rm PA} \sim \sqrt{\frac{GMt_{\rm stop}}{v_{\infty}}}$$

Pebble accretion: larger accretion radius

 v_{∞} matters in pebble accretion

Headwind regime (Bondi regime):
$$v_{\infty} \sim \eta v_{\rm K}, \ b_{\rm PA} \sim \sqrt{\frac{GMt_{\rm stop}}{\eta v_{\rm K}}}$$

shear regime (Hill regime):
$$v_{\infty} \sim b\Omega_{\rm K}, \ b_{\rm PA}^3 \sim \frac{GMt_{\rm stop}}{\Omega}, \ b_{\rm PA} \sim R_{\rm H}\tau_{\rm s}^{1/3}$$

QA: compare the maximum planetesimal accretion radius and pebble accretion radius

Pebble accretion: 2D vs 3D

$$\begin{split} b_{\rm PA} > H_{\rm peb} & \mbox{2D} & \dot{M}_{\rm PA,2D} = 2 b_{\rm PA} \Delta v \Sigma_{\rm p} \sim 2 \sqrt{G M t_{\rm stop} \Delta v} \Sigma_{\rm p} \\ b_{\rm PA} < H_{\rm peb} & \mbox{3D} & \dot{M}_{\rm PA,3D} = b_{\rm PA}^2 \Delta v \rho_{\rm p} \sim G M t_{\rm stop} \rho_{\rm p} \end{split}$$

QA: What's the role of disk turbulence on pebble accretion?

What's the mass for the onset of pebble accretion

Pebble accretion occurs

1) $t_{set} < t_{enc}$ particles can settle during encounter 2) $t_{stop} < t_{enc}$ drag is important during encounter

$$t_{\rm enc} \sim b/v_{\infty} \qquad b_{\rm PA} \sim \sqrt{\frac{GM_{\rm p}t_{\rm stop}}{v_{\infty}}}$$

$$v_{\infty,\text{crit}} \sim \left(\frac{M_p}{M_\star \tau_s}\right)^{1/3} v_{\text{K}} \sim \eta v_{\text{K}}$$

$$M_{\rm onset} = \tau_{\rm s} \eta^3 M_{\star}$$

$$M_{\text{onset}} = \tau_{\text{s}} \eta^3 M_{\star}$$
$$= 2.5 \times 10^{-4} \left(\frac{\tau_{\text{s}}}{0.1}\right) \left(\frac{\eta}{2 \times 10^{-3}}\right)^3 \left(\frac{M_{\star}}{M_{\odot}}\right) M_{\oplus}$$

Massive planets stop accreting pebbles Pebble isolation mass

Planetesimals accretion

Safronov1969; Wetherill & Stewart 1989, Kokubo & Ida 1996, 1998

Pebble accretion

Ormel & Klahr 2010; Lambrechts & Johansen2012

Viewed in the co-moving frame

Drazkowska+2022

Single site planetesimal formation + hybrid accretion

Classical view: planetesimals forms everywhere

Think a bit more: solid concentration and planetesimal formation might not happen everywhere

Where planetesimals can form

2. edge of planetary-induced gap

3. deadzone boundary

Chatterjee & Tan 2014,2015

Hu, Zhu & Tan+ 2016,2018

Ros & Johansen 2013 Ida & Guillot 2016 Schoonenberg & Ormel 2017 Drazkowska & Alibert 2017

Eriksson, Johansen & Liu 2020

Pressure maxima 1600 Constant α disk α transition disk 14001200 1000 Δ $\Sigma(\mathbf{g}/\mathbf{cm^2})$ bo active zone dead zone 800 600 400200 0.00 0.05 0.10 0.15 0.20 0.250.30 log r r (AU)

Pressure trap

Streaming instability at ice line silicate core icy mantle water vapor $\rho_{\rm peb} \simeq \rho_{\rm gas}$ H_{peb}

water ice line

1. Mono-dispersed population: limited growth

Rpl=400 km (7e-5 ME), Npl=580, pebble flux:100 ME/Myr

eccentricities and inclinations get excited

2. Poly-dispersed population: promote planet growth

Rpl=200-1000 km followed by Schafer+2017, pebble flux:100 ME/Myr

Largest body accretes most planetesimals and pebbles Small planetesimals damp large body's random velocity

Liu, Ormel & Johansen 2019

From Planetesimal Accretion to Pebble Accretion

Formation of Trappist-1 system

