原行星盘与行星形成暑期学校,北京,2024/07/24

Protoplanetary Disks: Gas Dynamics

Xuening Bai (白雪宁)

Institute for Advanced Study (IASTU) &

Department of Astronomy (DoA)

Why do we care about gas dynamics?

Grain growth	
--------------	--

cm

Planetesimal

formation

μm

Planet migration

Essentially all processes depend on the gas dynamics of protoplanetary disks.

Planetesimal

growth to cores

growth/accretion

to gas giants

Most importantly:

- Global structure and disk evolution
- Level of turbulence •

Theory confronting exoplanet populations

Outline

- Angular momentum transport: general
- Radial transport: instabilities and turbulence
- Vertical transport: magnetized wind
- Recent development

Useful references:

<u>Physical Processes in Protoplanetary Disks</u> by Armitage (2019)
<u>PPVII review chapter</u> by Lesur et al. (2023)
<u>Review in the solar system context</u> by Weiss, Bai & Fu (2021)
<u>Review on hydrodynamic turbulence</u> by Lyra & Umurhan (2019)

PPDs as accretion disks

Note: stellar age can be approximately estimated based on stellar luminosity and photospheric temperature.

- Typical accretion rate ~ $10^{-8} M_{\odot}$ yr ⁻¹ with large scatter.
- Accretion rate decreases with age.

They provide crucial constraints for understanding the gas dynamics of PPDs. Angular momentum transport: viscosity

Transport A.M. radially outward

viscosity / turbulence

Viscosity tries to make $\Omega_1 = \Omega_2$ Inner disk lose A.M to outer disk

By the gravito-/hydro/magnetic stresses

MHD mechanisms are sensitive to ionization Hydro mechanisms are sensitive to thermodynamics Gravitational stresses require massive disks Angular momentum transport: magnetized wind

Transport A.M. vertically

Need large-scale poloidal field threading the disk.

(Adopted from Weiss, Bai & Fu, 2021)

Wind properties are sensitive to disk physics.

Angular momentum transport

Recall the momentum equation in conservative form:

$$\partial_t(\rho v) + \nabla \cdot \mathsf{M} = -\rho \nabla \Phi$$

where the momentum flux tensor is: $M \equiv \rho v v - \frac{BB}{4\pi} + \left(P + \frac{B^2}{8\pi}\right)I$.

In cylindrical coordinates, the R and ϕ components become:

$$\partial_t(\rho v_R) + \frac{1}{R} \partial_R(R \mathsf{M}_{RR}) + \frac{1}{R} \partial_\phi \mathsf{M}_{\phi R} + \partial_z \mathsf{M}_{zR} = \frac{1}{R} \mathsf{M}_{\phi \phi} - \rho \partial_R \Phi ,$$

$$\partial_t(\rho v_\phi) + \frac{1}{R^2} \partial_R(R^2 \mathsf{M}_{R\phi}) + \frac{1}{R} \partial_\phi \mathsf{M}_{\phi \phi} + \partial_z \mathsf{M}_{z\phi} = -\frac{\rho}{R} \partial_\phi \Phi ,$$

The ϕ component can be rewritten to express angular momentum conservation:

$$\partial_t(\rho R v_\phi) + \frac{1}{R} \partial_R(R^2 \mathsf{M}_{R\phi}) + \frac{1}{R} \partial_\phi(R \mathsf{M}_{\phi\phi}) + \partial_z(R \mathsf{M}_{z\phi}) = -\rho \partial_\phi \Phi$$

Angular momentum transport

Integrating over z and ϕ , we obtain:

$$\frac{\partial (2\pi R\Sigma j_z)}{\partial t} + \frac{\partial}{\partial R} \left[2\pi R^2 \int_{-\infty}^{\infty} dz \left(\overline{\rho v_R v_\phi} - \frac{\overline{B_R B_\phi}}{4\pi} \right) \right] + 2\pi R^2 \left(\overline{\rho v_z v_\phi} - \frac{\overline{B_z B_\phi}}{4\pi} \right) \bigg|_{-\infty}^{\infty} = 0$$

Accounting for the accretion flow, this becomes

Accretion rate (steady state)

Accounting for the accretion flow, this becomes

$$\frac{\partial J_z}{\partial t} + \frac{\partial}{\partial R} \left(-\dot{M}_a j_z + 2\pi R^2 \int_{-\infty}^{\infty} T_{R\phi} dz \right) + 2\pi R^2 T_{z\phi} \Big|_{z=-z_s}^{z_s} = 0$$

AM flux due to accretion

AM transport (radial) AM extraction (vertical)

Radial transport

Vertical transport

$$\dot{M}_a \approx \frac{2\pi}{\Omega} \int_{-\infty}^{\infty} T_{R\phi} dz$$

$$\dot{M}_a \approx \frac{8\pi R}{\Omega} |T_{z\phi}|_{z_s}$$

(Assuming $T_{z\phi}(z_s) = -T_{z\phi}(-z_s)$).

If $T_{R\phi}$ and $T_{z\phi}$ are similar, then vertical transport (by wind) is more efficient than radial transport by a factor of $\sim R/H >> 1$.

The α -disk model

Radial transport of angular momentum by viscosity:

$$T_{R\phi}=lpha P$$
 (Shakura & Sunyaev, 1973)

For N-S viscosity:

$$T_{R\phi} = -\sigma_{R\phi} = -\rho\nu R \frac{d\Omega}{dR} = \frac{3}{2}\rho\nu\Omega = \left(\frac{3}{2}\frac{\nu}{c_sH}\right)P$$

With microscopic viscosity: $lpha \sim \lambda_{
m mfp}/H \ll 1$

Required value of α to explain PPD accretion rate: ~10⁻³-10⁻²

Need anomalous viscosity (e.g., turbulence) to boost α .

Viscous evolution based on the α -disk model

Angular momentum conservation (ignore wind):

$$\frac{\partial J_z}{\partial t} + \frac{\partial}{\partial R} \left(-\dot{M}_a j_z + 2\pi R^2 \int_{-\infty}^{\infty} T_{R\phi} dz \right) + 2\pi R^2 T_{z\phi} \Big|_{z=-z_s}^{z_s} = 0$$

$$2\pi R j_z \frac{\partial \Sigma}{\partial t} + \frac{\partial}{\partial R} \left(-\dot{M}_a j_z + 2\pi R^2 \alpha c_s^2 \Sigma \right) = 0$$

Mass conservation:

$$2\pi R \frac{\partial \Sigma}{\partial t} - \frac{\partial M_a}{\partial R} = 0$$

Viscous evolution equation:

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{dR}{dj_z} \frac{\partial}{\partial R} \left(\alpha c_s^2 \Sigma R^2 \right) \right]$$

Note:
$$j_z(R) = \Omega R^2$$

Gas is assumed to be locally isothermal.

Viscous evolution based on the α -disk model

Viscous evolution equation:

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{dR}{dj_z} \frac{\partial}{\partial R} \left(\alpha c_s^2 \Sigma R^2 \right) \right]$$

Note:
$$j_z(R) = \Omega R^2$$

Gas is assumed to be locally isothermal.

Wind-driven accretion

General expectation: wind extracts angular momentum => the entire disk shrinks

Armitage 2013, Bai 2016, Suzuki+2016, Tabone+2022

Governing equations:

$$2\pi R j_z \frac{\partial \Sigma}{\partial t} + \frac{\partial}{\partial R} \left(-\dot{M}_a j_z + 2\pi R^2 \int_{-z_b}^{z_b} T_{R\phi} dz \right) + 2\pi R^2 T_{z\phi} \Big|_{-z_b}^{z_b} = 0$$
$$2\pi R \frac{\partial \Sigma}{\partial t} - \frac{\partial \dot{M}_a}{\partial R} + \frac{\partial \dot{M}_{loss}}{\partial R} = 0$$

Generalized equation for disk evolution:

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{dR}{dj_z} \left(\frac{\partial}{\partial R} \alpha c_s^2 \Sigma R^2 + R^2 T_{z\phi} |_{-z_b}^{z_b} \right) \right] - \frac{\partial M_{\text{loss}}}{\partial R}$$
(diffusion) (advection) (loss)

Wind-driven accretion

Disk evolution
$$\frac{\partial \Sigma}{\partial t} = \frac{1}{R} \frac{\partial}{\partial R} \left[\frac{dR}{dj_z} \left(\frac{\partial}{\partial R} \alpha c_s^2 \Sigma R^2 + R^2 T_{z\phi} |_{-z_b}^{z_b} \right) \right] - \frac{\partial \dot{M}_{\text{loss}}}{\partial R}$$
(diffusion) (advection) (loss)

If we prescribe $T_{z\phi}$ in a similar way as $T_{R\phi}$, the results should qualitatively look like:

We will come back to this with new development.

Disk temperature structure: irradiation

To 0th order, may approximate the disk equilibrium temperature as

$$\alpha \frac{L_*}{4\pi R^2} \approx \sigma T_{\rm disk}^4 \implies T_{\rm disk} \sim R^{-1/2} \quad \text{(~R-1 for a flat disk)}$$

=> Study disk gas dynamics on top of this temperature background.

Energy dissipation

Stress from radial transport of angular momentum:

$$T_{R\phi} \equiv \overline{\rho \delta v_R \delta v_\phi} - \frac{\overline{B_R B_\phi}}{4\pi}$$

Rate of energy generation (*<dissipation*):

$$Q^{+} = -\frac{d\Omega}{d\ln R}T_{R\phi} = \frac{3}{2}\Omega T_{R\phi}$$

Radial transport of A.M. is usually accompanied by (local) heating.

In general, viscous heating only dominates the inner disk region (<1AU).

Question: why?

Wind-driven accretion is accompanied by Joule heating (i.e., dissipation of magnetic field), but it is generally insignificant. (Mori+2019)

Outline

- Angular momentum transport: general
- Radial transport: instabilities and turbulence
- Vertical transport: magnetized wind
- Recent development

Stability criterion for Keplerian disks

Are Keplerian disks hydrodynamically stable?

 Rayleigh criterion: differentially rotating fluid is stable when specific angular momentum increases outward (Rayleigh, 1916):

$$\frac{d(R^2\Omega)}{dR} > 0 \qquad \begin{array}{l} \text{In other words, the} \\ \text{epicyclic frequency:} \end{array} \kappa^2 = \end{array}$$

$$\kappa^2 = \frac{1}{R^3} \frac{\partial}{\partial R} (R^4 \Omega^2) > 0$$

• The more general Solberg-Høiland criterion for stability (e.g., Tassoul 1978):

$$\kappa^{2} + N_{R}^{2} + N_{z}^{2} > 0$$
 where $N_{R}^{2} = \frac{1}{\rho C_{p}} \left| \frac{\partial P}{\partial R} \right| \frac{\partial S}{\partial R}$, $N_{z}^{2} = \frac{1}{\rho C_{p}} \left| \frac{\partial P}{\partial z} \right| \frac{\partial S}{\partial z}$,
Brunt-Väisälä frequency (buoyancy)

Note: this criterion applies to adiabatic perturbations.

Keplerian disks are generally considered to be hydrodynamically stable!

Hydrodynamic instabilities

Gravitational instability

Toomre's Q parameter:

$Q \equiv \frac{c_s \Omega}{\pi G \Sigma}$ Disk is gravitationally unstable if **Q**<1.

It is likely achieved in early stages of PPDs when it is massive, but not over most of their lifetime.

- Rossby-wave instability
- Convective overstability
- Vertical shear instability
- Zombie vortex instability

Many of these instabilities require special thermodynamic conditions to operate, and are not sufficiently powerful to drive rapid accretion.

Gravitational instability

Consider a clump of gas in the disk with size L.

Self-gravity, tidal force, pressure

Rotation (tidal force) stabilizes against gravitational collapse if:

Gas pressure stabilizes against gravitational collapse if:

$$\frac{1}{\rho} \frac{P}{L} > \frac{GM_{\text{clump}}}{L^2} \qquad \Longrightarrow \qquad L < \frac{c_s^2}{\pi G\Sigma}$$

Thermo-hydrodynamical instabilities

PPDs are not adiabatic, and perturbations can be non-linear.

From Lesur+2023 review:

Nelson+2013

Klahr & Habbard 2014, Lyra 2014

Marcus et al. 2013

(Nearly isothermal)

(cooling time ~ dynamical time)

(adiabatic but nonlinear)

The vertical shear instability (VSI)

In hydrostatic equilibrium, PPDs generally have vertical shear in rotation velocity => source of free energy to power the VSI (with short coolilng).

(variant of the GSF instability in differentially rotating stars (Goldreich & Schubert 1967, Fricke 1968)

Leads to prominent vertical motion (body modes) and hence dust stirring.

In 3D, will produce turbulence by secondary instabilities.

(Richard+2016, Manger & Klahr 2018)

Occurrence of thermo-hydro-instabilities

Based on estimated cooling rates with standard disk model and dust opacities.

The Rossby-wave instability

Rossby waves occur in rotating fluids under a gradient in potential vorticity.

In the disk context, it is defined as $\Omega_{\rm PV} \equiv \frac{(\nabla \times \boldsymbol{v})_z}{\Sigma}$

The Rossby wave instability (RWI) occurs when there is a non-smooth radial variation in potential vorticity. (Lovelace+ 1999, Ono+16)

Lead to the production of multiple vortices, eventually merging into one giant vortex. (e.g., Li+ 2000,2001,Meheut+2010, 2012)

Usually results from a radial pressure bump, e.g., from planet-disk interaction (e.g., de Val-boro+ 2007, Lyra+2009, Zhu+ 2014)

More later (Ruobing/Pinghui's lectures).

Magnetorotational instability (MRI)

Rayleigh criterion for unmagnetized rotating disks:

Confirmed experimentally (Ji et al. 2006).

l

All astrophysical disks should be stable against this criterion.

Including (a vertical, well-coupled) magnetic field qualitatively changes the criterion (even as B->0):

All astrophysical disks should be unstable!

Magnetorotational instability (MRI)

Edge on view:

Face on view:

Local and global simulations of the MRI

PPDs are extremely weakly ionized

Very weak ionization in the gas substantially reduces the coupling between gas and magnetic fields, which can suppress the MRI!

Gas-B field coupling in weakly ionized gas

Ionized gas: well coupled

B field is frozen in the gas (flux freezing)

Weakly ionized gas: poorly coupled

Resistivity: B field slips through the electrons due to collisions.

Ideal Magnetohydrodynamics (MHD)

Non-ideal MHD

Disk microphysics: non-ideal MHD effects

Induction equation (grain-free):

Characterizes the importance of these effects. Unimportant when >>1.

(Bai 11a,b, Perez-Becker & Chiang 11a,b)

Am

⁽Bai & Stone 2011)

Lorentz force: $\sim oldsymbol{J} imes oldsymbol{B}$ is unaffected.

Note $\boldsymbol{J} = \frac{c}{4\pi} \nabla \times \boldsymbol{B}$

Induction equation (no grain):

 $\frac{\partial B}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \nabla \times \begin{bmatrix} \frac{4\pi\eta}{c} \boldsymbol{J} + \frac{\boldsymbol{J} \times \boldsymbol{B}}{en_e} - \frac{(\boldsymbol{J} \times \boldsymbol{B}) \times \boldsymbol{B}}{c\gamma\rho\rho_i} \end{bmatrix}$ inductive Ohmic Hall AD $- \qquad - \qquad (-)^2 = + \qquad (-)^3 = -$

The Hall term is Polarity Dependent!

Local simulations if PPDs that include the Hall effect: Bai 14,15, Lesur+14, Simon+15

Outline

- Angular momentum transport: general
- Radial transport: instabilities and turbulence
- Vertical transport: magnetized wind
- Recent development

Magnetized winds: strong poloidal field

Magneto-centrifugal wind:

B field is anchored to a razor-thin disk.

For sufficiently strong B field, it remains poloidal and enforces corotation with the disk at the footpoint.

Effective potential (corotation with r₀):

$$\phi(r,z) = -\frac{GM}{r_0} \left[\frac{1}{2} \left(\frac{r}{r_0} \right)^2 + \frac{r_0}{(r^2 + z^2)^{1/2}} \right]$$

centrifugal central star

<u>Centrifugal fling when inclination</u> <u>about the disk is less than 60deg.</u>

Magnetized winds: weak poloidal field

Magnetic pressure gradient:

B field is anchored to the disk.

For weak B field, it can no longer enforce corotation with footpoint and develops strong toroidal component, with two consequences:

1. Magnetic pressure (from B_{ϕ}) builds up and pushes the gas up (i.e. outflow).

2. Field lines are bent => the restoring force from magnetic tension extracts disk angular momentum.

Magnetized winds: conservation laws See Spruit (1996)

Assumptions: steady state, ideal MHD and axisymmetry.

Field and velocity can be decomposed by

 $B = B_p + B_{\phi} e_{\phi}$, $v = v_p + R\Omega(R)e_{\phi}$, $\Rightarrow v_p \parallel B_p$ poloidal toroidal

The following quantities are conserved along poloidal field lines (launched from R₀):

Mass flux:
$$k \equiv \frac{4\pi\rho v_p}{B_p}$$

Angular velocity of magnetic flux surface: $\omega \equiv \Omega - \frac{kB_{\phi}}{4\pi\rho R}$
Angular momentum flux: $l \equiv \Omega R^2 - \frac{RB_{\phi}}{k} = \omega R_A^2$ Alfven radius
Energy flux: $e \equiv \frac{v^2}{2} + h + \Phi - \frac{\omega RB_{\phi}}{k}$
Bernoulli: $E \equiv e - \omega l = \frac{v^2}{2} - \omega R v_{\phi} + h + \Phi = \frac{v_p^2 + (v_{\phi} - \omega R)^2}{2} + h + \Phi_{eff}$

Magnetized winds: Alfven radius

Critical points:

 v_p = slow/Alfven/fast magnetosonic speed

At the Alfvén point:
$$v_p^2 = B_p^2/4\pi
ho$$

Lever arm: $\lambda \equiv (R_A/R_0)^2$

Accretion vs mass loss:

$$\dot{M}_{\rm acc} \frac{dj}{dR} = \frac{d\dot{M}_{\rm wind}}{dR} \Omega_K (R_A^2 - R_0^2)$$

Ejection index:
$$\xi \equiv \frac{d\dot{M}_{\text{wind}}/d\ln R}{\dot{M}_{\text{acc}}}\Big|_{R=R_0} = \frac{1}{2} \frac{1}{(R_A/R_0)^2 - 1}$$

Transition between the two regimes

Prescribe the shape of B_p , solve the conservation laws and match critical points.

More self-consistent treatment needs simulations: cross field force balance.

Early studies

Treat the disk as boundary condition.

Full disk microphysics

2D axisymmetric, all 3 non-ideal MHD effects included.

Complex flow structures with major implications for planet formation.

Outline

- Angular momentum transport: general
- Radial transport: instabilities and turbulence
- Vertical transport: magnetized wind
- Recent development

Does wind-driven accretion disk always shrink?

Formation of poloidal B field loops beyond disk truncation radius could make the disk expand!

How exactly disk would evolve is more complex (we don't know yet).

Co-existence of turbulence and winds

The MRI co-exists with wind, but wind dominates angular momentum transport.

Co-existence of the VSI and MHD winds (Cui & Bai 2020) Co-existence of the VSI and the MRI (+MHD winds) (Cui & Bai 2022)

Formation of disk substructures

Current understandings

MRI suppressed by Ohmic +AD, disk is largely laminar.

MRI damped by AD

Additional action of various hydro instabilities

Future directions

Implications for planet formation? Grain growth/transport, planetesimal formation, planetary growth, pebble accretion, planet migration

Summary

- Angular momentum in PPDs determines disk structure and evolution, fundamental to understand planet formation.
- Two modes: radial transport (by "viscosity") and vertical transport (by magnetized wind).
- Several thermo-hydrodynamic mechanisms can be viable to produce weak-to-modest level of turbulence.
- The MRI is a powerful instability to drive viscous accretion, but requires the B field to be coupled to the gas.
- PPDs are extremely weakly ionized, resulting in non-ideal MHD effects => suppress or damp the MRI.
- Wind-driven accretion dominates (other turbulence co-exists), gas dynamics depends on the polarity of B field.