
Gravitational N-body dynamics

with REBOUND examples

刘尚飞

中⼭⼤学物理与天⽂学院

2024-07-24

1 / 34

Outlines

Introduction to N-body problems

Methods of solving N-body problems

MISC: softening, collisions, etc.

Addtional forces/effects

REBOUND

2 / 34

Gravity is univeral
Momentum equation（Newton's second law ）

The knowledge of gravity field in fluid simulations is usually
not easy to obtain:

Poisson's equation

But in particle-based hydrodynamics (SPH), the gravity is the same as in N-body simulations.

→F = m→a

ρ + ρ→v ⋅ ∇→v = −∇P + ρ→g
∂→v
∂t

∇ ⋅ →g = −4πGρ

3 / 34

艺术想象图：⽜顿坐在苹果树下领悟了万有引⼒

F = G
m1m2

r2

4 / 34

Description of gravitational N-body problems
Each member of an aggregate of N point mass bodies with masses ,
experiences an acceleration that arises from the gravitational attraction of all the other bodies in
the system.

The problem is then completed by specifying the initial velocities and positions
 for the N particles.

The ODEs describe astronomical phenomena ranging from orbits of planets and moons to the
evolution of star clusters to the spiral structure of galaxies.

The goal is to capture, as accurately as possible, the long-term behavior of the N-body system.

few-body problems: accuracy
large N problems: efficiency

mi (i = 1, ⋯ , N)

= −
N

∑
j=1 ; j≠i

d2
→ri

dt2

Gmj (→ri − →rj)

∣∣→ri − →rj∣∣
3

→vi (t = 0)
→ri (t = 0)

5 / 34

Solving N-body problems
Rewrite the second-order equations as a set of 2N coupled first-order ODEs

In total, we have 6N variables to solve (integrate). In Euler method, one can construct a basic
finite difference scheme with a constant time interval to proceed the integration

We know Euler integration method is rudimentary, but why we say that?

= →vi

d→ri

dt

= −
N

∑
j=1 ; j≠i

d→vi

dt

Gmj (→ri − →rj)

∣∣→ri − →rj∣∣
3

∆t

→ri, t+∆t = →ri, t + →vi, t∆t

→vi, t+∆t = →vi, t + →F i, t∆t

6 / 34

Conservation laws

To tell a integration scheme is good or not, one can always check the energy and angular
momentum conservation, but not vice versa!

In practice, we often use energy conservation

Etot = −
N

∑
i=1

N

∑
j=1 ; j≠i

+
N

∑
i=1

miv
2
i + mtotv2

com
1
2

Gmimj

rij

1
2

1
2

→Ltot =
N

∑
i=1

mi (→ri × →vi)

∆E =
Efinal − Einitial

Einitial

7 / 34

Sun-Earth system in Euler scheme for 100 yrs
 as a function of . So at most after year, the energy error builds up to

Why the best accuracy is achieved at a time step ?

log ∆E log ∆t 105 ∼ 10−1

∆t ∼ 10−5

8 / 34

A closer look to the Euler method
Euler method is asymmetric because the integrated variable solely depends on the initial value.

The ODEs have the form , so we can write down the Taylor series

The Euler method ignors 2nd-order terms and above. A higher-order integration can be designed
to estimate better over a particular interval .

A simple improvement is to utilize the slope of and the Euler method to estimate

which provides a more accurate value for the slope over the interval .

= g(W)
dW

dt

W n+1 = W n + h + + ⋯
dW

dt

h2

2!
d2W

dt2

g(W) h

g(tn, W n)

W (tn +) = Wb = W (tn) + g(tn, W n) ⟹ gb(tn + , Wb) ,
h

2
h

2
h

2

h

9 / 34

A classic 4th-order Runge-Kutta method

fa = g(tn, W n)

Wb = W n + fa
h

2

fb = g(tn + , Wb)
h

2

Wc = W n + fb
h

2

fc = g(tn + , Wc)
h

2

Wd = W n + hfc

fd = g(tn + h, Wd)

W n+1 = W n + hfa + hfb + hfc + hfd
1
6

1
3

1
3

1
6

10 / 34

11 / 34

Time stepping
In practical, one often needs the ability to adapatively increase or decrease the time step. Step
doubling is a commonly used adaptive step control method. and are estimated values at
interval and , respectively.

If , then adequate convergence has not been achieved. So we need to decrease the time
step. And the process is repeated until .

W1 W ′
1

h 2h

δe =
∣
∣
∣

∣
∣
∣

W1 − W ′
1

W1

δe ≥ δmax
δe ≤ δmax

12 / 34

Other high-order general methods
Bulirsch-Stoer integration: a modified midpoint method, see e.g., Numerical Recipies in C.

ias15 (Rein & Spiegel 2015): a 15th-order modified Runge-Kutta integrator, default
integrator in the rebound code

13 / 34

Symplectic integration
In planetary systems, energy conservation in long-term is a relatively weak constraint. Time
reversibility is often more desirable property. The basic idea is to split the total Hamiltonian of
the system into two parts.

A simple implementaion is the leapfrog method, in which positions of all particles are integrated
for half a time-step while keeping the velocities fixed, and then velocities are integrated for half a
time-step while positions are fixed.

Symplectic integration is ideal for few body problem in planetary systems where planetary
interactions are weak. A more advanced symplectic integrator Wisdom-Holman mapping
(Wisdom & Holman 1991) is implemented in REBOUND.

H = Hkep + Hinteraction

→rn+1 = →rn + →vn+1/2∆t

→vn+1/2 = →vn−1/2 + →an∆t

14 / 34

N-body for large N

0:02 0:20 0:01 0:55

15 / 34

Tree: approximate method ∼ O(N log N)

16 / 34

Fast Fourier transformation (FFT)
Commonly used in grid-based hydrodynamics.

∼ O(N log N)

17 / 34

MISC: softening

F = G
m1m2

r2 + ϵ2

18 / 34

MISC: collision
A hard-sphere model for colliding pairs

19 / 34

Collision outcomes:
bouncing: default

merger: implemented

fragmentation: not considered in the default version

20 / 34

Additional forces
disk torques

gas drag

magnetic forces, etc.

There is an additional force example to show how one can add an additional force into
REBOUND, but a more advanced and flexible way to do it is using the REBOUNDx extension
(Tamayo et al. 2019)

21 / 34

REBOUND code
Initially written in C99, now it has a python version

Additional forces/effects can be added using the REBOUNDx extension.

Which version to go?

Python version: easy to use, can be integrated with other tasks

C version: easy to parallize with OPENMP and MPI, when you want to modify/add new
features

22 / 34

23 / 34

Visualizing the two-body problem

Time: 0 yr Time: 1000 yr

24 / 34

Plot Python code

https://localhost/presentations/nbody.html?panelset=plot#panelset_plot

Visualizing the two-body problem

Integrate for a thousand years
sim.integrate(1000.*2.*np.pi)

Plot the final state
fig = rebound.OrbitPlot(sim,color=TrueTrueTrueTrue)
plt.show()

importimportimportimport rebound # Rein & Liu (2012)
importimportimportimport matplotlib.pyplot asasasas plt
importimportimportimport numpy asasasas np

Initializing a simulation
sim = rebound.Simulation()

Adding particles into the simulation
sim.add(m=1);
sim.add(m=1e-3/300., a=1) #地球质量约为太阳质量的百万分之三
sim.move_to_com()

Plot the initial state
fig = rebound.OrbitPlot(sim,color=TrueTrueTrueTrue)
plt.show()

 So easy! 24 / 34

Plot Python code

https://localhost/presentations/nbody.html?panelset=python-code#panelset_python-code

0 yr 1 Myr

25 / 34

0 yr 1 Myr

20 kyr 50 kyr

26 / 34

Liu et al. 2019

45度斜碰

Collision outcomes

0:01 0:40

27 / 34

Collision at 20 degrees

28 / 34

Alfvén wave drag as the main driver

Tool: REBOUND code (Rein & Liu
2012)

Alfvén wave drag modeled as an
additional force

Parameters:

 au
 T G

A wide range of semi-major axis and
particle sizes

Alfvén wave drag is very efficient!

Alfvén wave drag modeled as an
additional force

Orbital migration and circularization

q ≃ 10−3 = 2R⊙

B∗ = 100 = 106

M∗ = 0.6M⊙
a

r

29 / 34

A fourth-order Runge-Kutta
integrator has been implemented
to calculate orbital evolution

Incorporation of REBOUND
(Rein & Liu 2012) in Athena++
is possible

Formation of Galilean moon-like systems

1:00 1:00

30 / 34

31 / 34

32 / 34

References
Numerical Methods in Astrophysics: an introduction, Bodenheimer, Laughlin, Rozyczka, &
Yorke 2007

Astrophysics of Planet Formation (2nd ed.), Phil Armitage 2020

Gravitational N-body Simulations: tools and algorithms, Sverre J. AArseth 2003

33 / 34

