;%REBOUNDexmq‘

¥

X i &
TR ZE Y

‘\’1 y i)roblems

,‘body problems

- Grayity. IS uivl

Mome,n um equatlon (Newton S second lawe ;

mﬁc‘— B
/ & -I—pv VV——VP+ ii- S

-

The knowledge of g avl y e \I mil at10n

= i A"

not easy to obtain: A

——

NG —47er

But in parttcle-based hydrodynamzcs (SPH), the gravity is the same-as in gb dy yf;?:f'{,
t /”‘ -4—\,1(- S i |

—~

A 4 /
R . d"?///ﬁ
0 ":

A
s

g
(] ‘e
- .
-
RY B L7, 4 \::, g
. PR AL D .
N .
-~ . . * [
- ,’o .h_-'.' ot
b S e v ¥
- “I N . . .-
. g
¥ -t ’. - . -
.
' N T e
\ab " 2 -"‘: .’
f ret N Y.

4/34

Description of gravitational N-body problems

Each member of an aggregate of N point mass bodies with masses m; (i =1,---,N) ,
experiences an acceleration that arises from the gravitational attraction of all the other bodies in
the system.

Gm; (7; — 7))
7 — 75

The problem is then completed by specifying the initial velocities v; (t = 0) and positions
7; (t = 0) for the N particles.

The ODEs describe astronomical phenomena ranging from orbits of planets and moons to the
evolution of star clusters to the spiral structure of galaxies.

The goal is to capture, as accurately as possible, the long-term behavior of the N-body system.

o few-body problems: accuracy
e large N problems: efficiency

5/34

Solving N-body problems

Rewrite the second-order equations as a set of 2N coupled first-order ODEs

dr;

= ;

Gm r 'r])

dt
dv@ _ i

3
j=1; j#i \r@-—rj\

In total, we have 6N variables to solve (integrate). In Euler method, one can construct a basic
finite difference scheme with a constant time interval At to proceed the integration

TitiAt = Tt +v; 1At
Vi, tyat = Vit T Fy 1At

We know Euler integration method 1s rudimentary, but why we say that?

6/34

Conservation laws

1 N N

Gm;m,; 1
5 N A § : 2 2
Etot = —5 P P o U, + Emtotvcom
i1=1 j=1; j#i Tij 1=1

. N
Lot = Zmi (Fi X 1_52')

1=1

To tell a integration scheme 1s good or not, one can always check the energy and angular
momentum conservation, but not vice versa!

In practice, we often use energy conservation

Etinal — Finitial
AE =
Eipitial

7/ 34

Sun-Earth system in Euler scheme for 100 yrs

log AE as a function of log At. So at most after 10° year, the energy error builds up to ~ 10~}

—
-

TIIIITIIIIIIIITI'I

—

Ll ol

log ERROR

llll

log TIME STEP

Why the best accuracy is achieved at a time step At ~ 107° ?

8/34

A closer look to the Euler method

Euler method is asymmetric because the integrated variable solely depends on the initial value.

dW
The ODEs have the form el g(W), so we can write down the Taylor series

dw R? &*w

W™ =W" +h
TV T e

The Euler method ignors 2nd-order terms and above. A higher-order integration can be designed
to estimate g(W) better over a particular interval h.

A simple improvement is to utilize the slope of g(t", W™) and the Euler method to estimate

h h h
W (14 5) = W= W)+ Gale W) = ot + 5, W),

which provides a more accurate value for the slope over the interval h.

9/34

A classic 4th-order Runge-Kutta method
f a— 49 (tna Wn)

h
Wy=W"+2f,
n h
fo = g(t +§7Wb)
h
We=W"+ < f,

_h
fc:g(t +§7Wc)
Wd:Wn+hfc
fa=g(t" + h,Wy)

1 1 1 1

Wt =W + Zhf, + =h —hf.+ =h
+6 f+3 fb‘|‘3 f+6 fa

10 / 34

Yo+ hk3

y0+hk2/2
y0+hk1/2

Yo

to+h/2

to+h

11/34

Time stepping

In practical, one often needs the ability to adapatively increase or decrease the time step. Step
doubling is a commonly used adaptive step control method. W; and W, are estimated values at

interval h and 2h, respectively.

s | W w
e — Wl

If §, > d0.,.x» then adequate convergence has not been achieved. So we need to decrease the time
step. And the process is repeated until d, < 0y ,4.

12/ 34

Other high-order general methods

e Bulirsch-Stoer integration: a modified midpoint method, see e.g., Numerical Recipies in C.

e 1asl5 (Rein & Spiegel 2015): a 15th-order modified Runge-Kutta integrator, default
integrator in the rebound code

13 /34

Symplectic integration

In planetary systems, energy conservation in long-term is a relatively weak constraint. Time
reversibility is often more desirable property. The basic idea is to split the total Hamiltonian of
the system into two parts.

H = erp + Hinteraction

A simple implementaion is the leapfrog method, in which positions of all particles are integrated
for half a time-step while keeping the velocities fixed, and then velocities are integrated for half a
time-step while positions are fixed.

Tnil = Tnp + ’Un_|_1/2At
Unt1/2 = Up_1/2 T anAt

Symplectic integration is ideal for few body problem in planetary systems where planetary
interactions are weak. A more advanced symplectic integrator Wisdom-Holman mapping
(Wisdom & Holman 1991) is implemented in REBOUND.

14 /34

Tree: approximate method ~ O(N log N)

Tree construction

Force eva

uation

G

/7"

\L.

o
N
\._

,. =

NS

\

>9_

GO

16 /34

Fast Fourier transformation (FFT) ~ O(N log N)

Commonly used in grid-based hydrodynamics.

17/ 34

MISC: softening

mims
r? 4 €2

18 /34

MISC: collision

A hard-sphere model for colliding pairs

19/ 34

Collision outcomes:

e bouncing: default
e merger: implemented

e fragmentation: not considered in the default version

20/ 34

Additional forces

o disk torques
e gasdrag

e magnetic forces, etc.

There is an additional force example to show how one can add an additional force into

REBOUND, but a more advanced and flexible way to do it is using the REBOUNDXx extension
(Tamayo et al. 2019)

21/ 34

REBOUND code

Initially written in C99, now it has a python version

Additional forces/effects can be added using the REBOUNDxX extension.

Which version to go?

e Python version: easy to use, can be integrated with other tasks

e C version: easy to parallize with OPENMP and MPI, when you want to modify/add new
features

22/ 34

@ REBOUND

Home

Welcome to REBOUND
Features
Contributors
Papers
Acknowledgments

License

Changelog

hannorein/rebound
e 447 ¥ 179

Q, Search

Welcome to REBOUND

REBOUND is an N-body integrator, i.e. a software package that can integrate the motion of particles under the influence of gravity.

The particles can represent stars, planets, moons, ring or dust particles. REBOUND is very flexible and can be customized to
accurately and efficiently solve many problems in astrophysics.

Features

» Symplectic integrators (WHFast, SEl, LEAPFROG, EOS)

 High order symplectic integrators for integrating planetary systems (SABA, WH Kernel methods)

» Hybrid symplectic integrators for planetary dynamics with close encounters (MERCURIUS)

« High accuracy non-symplectic integrator with adaptive time-stepping (IAS15)

» Support for collisional/granular dynamics, various collision detection routines

* The code is written entirely in C, conforms to the ISO standard C99 and can be used as a thread-safe shared library
¢ Easy-to-use Python module, installation in 3 words: pip install rebound

¢ Extensive set of example problems in both C and Python

¢ Real-time, 3D OpenGL visualization (C version)

* Parallelized with OpenMP (for shared memory systems)

« Parallelized with MPI is supported for some special use cases only (using an essential tree for gravity and collisions)
* No dependencies on external libraries (use of OpenGL/glfw3 for visualization is optional)

¢ The code is 100% open-source. All features are inluced in the public repository on github

* No configuration is needed to run any of the example problems. Just type make && ./rebound in the problem directory to run
them

e Comes with standard ASCII or binary output routines

23 /34

Visualizing the two-body problem

Plot
Time: O yr Time: 1000 yr
10 - 10 -
0.5 - 0.5 -
0.0 * 0.0 * .
) T) ‘l
I”"' /'I’
-05 / -05 /
-10 . -1.0 —
10 -05 0.0 05 10 10 -05 0.0 05 10
X X

2 24 /34

https://localhost/presentations/nbody.html?panelset=plot#panelset_plot

Visualizing the two-body problem

Python code
import rebound # Rein & Liu (2012) # Integrate for a thousand years
import matplotlib.pyplot as plt sim.integrate(1000.*2.*np.p1)

import numpy as np _
Plot the final state

Initializing a simulation fig = rebound.OrbitPlot(sim,color=True)
sim = rebound.Simulation() plt.show()

Adding particles into the simulation
sim.add(m=1);

sim.add(m=1e-3/300., a=1) #thEKFEZI N XFHFE
sim.move_to_com()

Plot the initial state
fig = rebound.OrbitPlot(sim,color=True)
plt.show()

& So easy! 24/ 34

https://localhost/presentations/nbody.html?panelset=python-code#panelset_python-code

Collision outcomes

Cycle: 3751 'Time:5100.14

Volume

Var: ders N N
— 18.00
45 FE Rl
—13.50
4500 4601.0 s
110!
—0,0001000]
Max: 27.75
Mir: 1.000&-19
E 10°
10-1 B0 *é
<]
&)
a
10
Y

1073

Liu et al. 2019

277/ 34

Collision at 20 degrees

fgrom = 0.1 Myr, & = 10

100

11 f=1018
75 6
50 4
25 2

0
0 10 20 30 40 50 60 70 80 90
Collision angle

fgrow = 0.1 My, f = 2.0

178 [T T parg
150 .

125 ‘ 6
100

7 4

~

50
25
0

0
0 10 20 30 40 S0 60 70 80 90

Collision angle
k=10,f =20
I
1250 | fgew =02 Myr .
100 (]
6
75
4
25 2
0 0
0 10 20 30 40 SO 60 70 80 %0
Collision angle
Jupiter inside, 7504 = 0.2 Myr
| =Lk=10
wf [y SRR
|
7 6

-~
Probability (%)

~

1

0
0 10 20 30 40 S0 60 70 80 %
Collision angle

Probability (%)

Probability (%)

Probability (%)

N

T
125 j =15
100 |- 8
75 _ 6
50 i 4
25 | F 2
0 [0
0 10 20 30 40 50 60 70 80 90
Collision angle
s } k=6,
150 1
125 Tl 6
100
7 4
50
2
25 “»
,

0
0 10 20 30 40 50 60 70 80 %0

Collision angle
125
1 | fgrow = 0.3 Myr {8
1
100 |
: 6
75 | B
1
4
1
» 1
- 2
{
25 "
! I
0 0
0 10 20 30 40 50 60 70 80 90
Collision angle
usf| [0 1 so2k=10 .
100
6
75
— 4
50
25 ’ i» 2
r 0

0
0 10 20 30 40 50 60 70 80 90
Collision angle

Probability (%)

Probability (%)

Probability (%)

Probability (%)

N

N

125 f=20

e

0
0 10 20 30 40 50 60 70 80 %0

- £
Probability (%)

~

Collision angle
150 ! k=8
_ ' =
128 H s
100 6

: mmn:

0 0
0 10 20 30 40 50 60 70 80 90

Collision angle

1257 : fyrow = 0.5 Myr |
100

6
7%

4
50
25 2

0 0
0 10 20 30 40 50 60 70 80 90

Collision angle
1
1s0f | [=2,k=618
m U
I -
125 : 6
100 \
7% : 4
1
50 |
| 2
25 |
I
1

0 0
0 10 20 30 40 50 60 70 80 90
Collision angle

Probability (%)

Probability (%)

Probability (%)

28 /34

Orbital migration and circularization

e Tool: REBOUND code (Rein & Liu
2012)

Alfvén wave drag modeled as an
additional force

Parameters:

o & 10 3.au = 2R _ :
B, = 100 T =4l0kc :
M, =0.6M, - ' o
o A wide range of semi-major axis a and
- ; :. particle sizesr "
\lfvén wave drag as the main drive -

P

>~ gy

= e Alfvén wave drag modeled as an

additional force

Formation of Galilean moon-like systems

time=899.95 ° A fOUI‘th-OI’dGI’ Runge-Kutta
: integrator has been implemented
to calculate orbital evolution

Incorporation of REBOUND
(Rein & Liu 2012) in Athena++
1S possible

asteroid proper orbital elements

I L L LA 1 r 1 L Bl 1

21222324 252627 28 29 3

a, (AU)

3.1 3.

3.

33435

31/34

Celestial body

True anomaly
Argument of pgriapsis

— (Y')
Longitude of ascending node Reference
direction

Q INclination

Ascending node

32 /34

References

Numerical Methods in Astrophysics: an introduction, Bodenheimer, Laughlin, Rozyczka, &
Yorke 2007

Astrophysics of Planet Formation (2nd ed.), Phil Armitage 2020

Gravitational N-body Simulations: tools and algorithms, Sverre J. AArseth 2003

33/34

