

Disk Observations II

Feng Long (龙凤) University of Arizona

2024 Summer School

ALMA/DSHARP Andrews+2018

Disk Observations II

Feng Long (龙凤) University of Arizona

- (recap) the motivation of disk study
- overview of disk observing tools (ALMA prime)
- dust and gas in disks (ALMA + JWST)

2024 Summer School

Outline of this talk

Today, >5000 exoplanets have been identified

Cumulative Detections Per Year

27 Jun 2024 exoplanetarchive.ipac.caltech.edu

Today, >5000 exoplanets have been identified

To understand the planet formation process and the diverse properties of planetary systems, we need to know well the planet formation environment:

protoplanetary disks

Overview of protoplanetary disk: dust + gas

stellar accretion planet formation disk wind/outflow

Birnstiel 2023 ARA&A

Small grains are well mixed. They set the photosphere of the disk where stellar light is scattered and absorbed.

Large grains sediment to mid-plane. They dominate mass and thermal emission.

Molecular emission comes from a layer shielded enough from photodissociation but warm enough to avoid freezeout

different tracers probe different disk properties

different wavelengths trace different disk area

- mass, size, structure
- temperature, density, chemistry

 \bullet \bullet \bullet

protoplanetary disk scales 10s-100s AU in radius 0.07-0.7 arcsec if d=140pc

Miotello+2023 PPVII review

ALMA observations

Three types of observations

- **continuum** imaging, up to 7.5GHz bandwidth
- **Spectral line** imaging, high velocity resolution of \sim 30 m/s
- **Polarization** mapping (full Stokes parameters of I, Q, U, V)

ALMA observation products

mm continuum image

From Sky Brightness to Visibility

- I. An interferometer measures the interference pattern observed by pairs of apertures
- 2. The interference pattern is directly related to the source brightness. In particular, for small fields of view, the complex visibility, $V(u,v)$, is the 2D Fourier transform of the brightness on the sky, $T(x,y)$

(van Cittert-Zernike theorem)

Fourier space/domain

$$
V(u, v) = \int \int T(x, y)e^{2\pi i(ux+vy)} dx dy
$$

 $T(x,y) = \int \int V(u,v)e^{-2\pi i(ux+vy)}dudv$ Image space/domain

How interferometer (ALMA) works?

Small uv-distance: **short baseline** (measure **extended** emission)

Long uv-distance: **long baseline** (measure **small-scale** emission)

Visibility visualization

most disk emission

Well-resolved

unresolved point source

The observed (AKA dirty) image is the true image convolved with the PSF.

 \circ

 $TD(x,y)$
(dirty image)

- Fourier transform of sampled visibilities creates a **dirty image** - the convolution product of true sky brightness and the point spread function (PSF, 'dirty beam')
- We need to **deconvolve** the PSF from the dirty image to reconstruct the source image ('**clean**')
- The final 'cleaned' image is the convolution of sky brightness model and 'cleaned' beam

How to set up ALMA observations to obtain mm fluxes for a typical disk?

How to set up ALMA observations to obtain mm fluxes for a typical disk?

How to set up ALMA observations to map the disk structure?

How to set up ALMA observations to get gas line information?

ALMA opens up statistical study of fundamental disk properties

PPVII review

dust mass in disks

Is the remaining disk material sufficient to form planets?

$$
M_d = \frac{d^2 F_{\nu}}{\kappa_{\nu} B_{\nu}(T_c)}
$$

Drazkowska+2023 PPVI Chapter

dust mass in disks

Scaling relation with stellar mass M

$$
I_d = \frac{d^2 F_{\nu}}{\kappa_{\nu} B_{\nu}(T_c)}
$$

Figure from Ansdell et al. 2017 Using results by Andrews+2013, Ansdell+2016/2017, Pascucci+2016, Barenfeld+2016

$$
M_d = \frac{d^2 F_{\nu}}{\kappa_{\nu} B_{\nu}(T_c)}
$$

Figure from Ansdell et al. 2017 Using results by Andrews+2013, Ansdell+2016/2017, Pascucci+2016, Barenfeld+2016

dust mass in disks

Scaling relation with stellar mass

dust disk size

Andrews 2020, ARA&A

CARMA 0.17"x0.13'' Kwon+2011

ALMA 0.03" ALMAPartership+2015

The ALMA revolution of disk structure

Dust "trap" in IRS 48

CO gas **Small micron grains**

van der Marel+2013

Planet induced vortex?

Disks with large inner cavity (transition disks)

Francis & van der Marel 2020 Pinilla+2018

ш

A variety of morphological features observed in disks

Axisymmetric gaps and rings are the most common.

Bae+2023, PPVII review

Axisymmetric gaps and rings are the most common.

• Varying numbers of rings • Found in all disk radii

Disk substructures are likely formed early and ubiquitous!

detections in protostellar disks (<1 Myr)

Shi, Long, Herczeg+2024

The origin of disk substructures

Many different approaches but hard to distinguish!

- MHD physics occurs on small scales, usually not detectable
- Grain growth assessment is often impeded by high optical depth
- Chemistry is often uncertain
- Planets are always obscured from our view!

The ALMA search of young planets - dust

HST - UV+optical *Zhou+2021*

VLT/MUSE - optical *Haffert+2019*

Two young accreting giant planets in the PDS 70 $(-5$ Myr) disk cavity

VLT/SPHERE - infrared *Keppler+2018*

ALMA - mm *Benisty+2021*

Circumplanetary Disks (CPD)

The ALMA search of young planets - dust

Long+2020, in prep

The multiple ways to view a line data cube Local line profile 0.1 upper lower surface surface $(y/beam)$
 2.3
 -2.5 all processing the ______ $\sum_{u=0.1}^{3}$ والمستواف والموالي والمستواتان upper surface ower surface 0.0 10 $\overline{2}$ Channel map Velocity (km/s) 0.030 $v = 6.76$ km/s 0.025 \overline{c} 0.020 $\frac{2}{5}$ Δ Dec (") $0.015 \frac{5}{2}$ \mathbf{o} lower 0.010 \vec{E} surface -2 upper surface 0.005 central star -4 0.000 0 -2 2 -4 4 Δ RA (")

Location consistent with dust gap

The ALMA search of young planets right in the set of the

The ALMA search of young planets - gas kinematics (CPD)

12CO kink feature at larger distance *Bae+2022*

What can we use line data for?

Total gas mass from integrated line fluxes

What can we use line data for?

Measuring gas disk size (Key quantity of disk evolution)

Contour: mm-continuum emission

Facchini+2019

Color: CO emission Color: CO emission

extended gas distribution in a small dust disk: efficient radial drift for CX Tau?

What can we use line data for?

Measuring stellar mass using the near-Keplerian rotation of the disk gas

* degeneracy with disk inclination and distance

What can we use **line data for?**

Laws+2021

The disk chemical diversity

The distribution of multiple species/transitions in one disk!

(MAPS: Oberg+2021)

Gas emission from five disks

Diverse morphology for a single species in different disks (related to e.g., UV field? dust structure)

(MAPS: Oberg+2021)

The disk chemical diversity