

Disk Observations

Feng Long (龙凤) University of Arizona

2024 Summer School

Outline of this talk

- (recap) the motivation of disk study
- overview of disk observing tools (ALMA prime)
- dust and gas in disks (ALMA + JWST)

ALMA/DSHARP Andrews+2018

Disk Observations

Feng Long (龙凤) University of Arizona

2024 Summer School

Today, >5000 exoplanets have been identified

Cumulative Detections Per Year

27 Jun 2024 exoplanetarchive.ipac.caltech.edu

Today, >5000 exoplanets have been identified

To understand the planet formation process and the diverse properties of planetary systems, we need to know well the planet formation environment:

protoplanetary disks

Overview of protoplanetary disk: dust + gas

stellar accretion planet formation disk wind/outflow

different different wavelengths trace different disk area

d

different tracers probe different disk properties

- mass, size, structure
- temperature, density, chemistry

. . .

Small grains are well mixed. They set the photosphere of the disk where stellar light is scattered and absorbed.

Large grains sediment to mid-plane. They dominate mass and thermal emission.

Molecular emission comes from a layer shielded enough from photodissociation but warm enough to avoid freezeout

protoplanetary disk scales 10s-100s AU in radius 0.07-0.7 arcsec if d=140pc

Miotello+2023 PPVII review

species transitions

ALMA: Atacama Large (sub)Millimeter Array

66 reconfigurable antennas

Main array: 50 x 12m - sensitivity + image fidelity Wavelength: 0.32 - 7mm Baseline range: 150m - 16km Resolution ~ wavelength / baseline (0.015" at 1mm)

S-24

Total Power Array: 4 x 12m Atacama Compact Array (ACA): 12 x 7m

ALMA observations touches the cold universe

Three types of observations

- **continuum** imaging, up to 7.5GHz bandwidth
- **Spectral line** imaging, high velocity resolution of ~ 30 m/s
- Polarization mapping (full Stokes parameters of I, Q, U, V)

ALMA observation products

mm continuum image

Isella+2016

From Sky Brightness to Visibility

- I. An interferometer measures the interference pattern observed by pairs of apertures
- 2. The interference pattern is directly related to the source brightness. In particular, for small fields of view, the complex visibility, V(u,v), is the 2D Fourier transform of the brightness on the sky,T(x,y)*image* plane

(van Cittert-Zernike theorem)

Fourier space/domain

$$V(u,v) = \int \int T(x,y) e^{2\pi i (ux+vy)} dx dy$$

 $T(x,y) = \int \int V(u,v)e^{-2\pi i(ux+vy)}dudv$ Image space/domain

How interferometer (ALMA) works?

Small uv-distance: **short baseline** (measure **extended** emission)

Long uv-distance: **long baseline** (measure **small-scale** emission)

Visibility visualization

Well-resolved

unresolved point source

The observed (AKA dirty) image is the true image convolved with the PSF.

0

TD(x,y) (dirty image)

T(x,y)

(True sky

brightness)

- Fourier transform of sampled visibilities creates a **dirty image** - the convolution product of true sky brightness and the point spread function (PSF, 'dirty beam')
- We need to **deconvolve** the PSF from the dirty image to reconstruct the source image ('clean')
- The final 'cleaned' image is the convolution of sky brightness model and 'cleaned' beam

How to set up ALMA observations to obtain mm fluxes for a typical disk?

					$\sigma_{ m S}$ =	$=rac{1}{\eta_{ m q}\eta_{ m c}A_{ m eff}}$	$\frac{w_r2kT_{ m sy}}{w_{ m ff}(1-f_s)\sqrt{N(N)}}$
	Declination	22:00:00.00				✓]	
	Polarisation	Dual ~					
	Observing Frequency	345				GHz 🔻	
	Observing Band	ALMA_RB_07 V					
Ba	andwidth per Polarization					Iz 🔻	
	Water Vapour	Automatic Choice	\bigcirc Manual Choice				
	Column Density	0.913mm (3rd Octile) $ \smallsetminus $					
	Trx, tau, Tsky	72 K, 0.158, 50.207 K					
	Tsys	174.775 K					
		-	ALMA sens		, ea.		
	12 m Array	-	7 m Array		Total Power Array		
Number of Antennas	12 m Array 43			• • •	.		
Number of Antennas Resolution			7 m Array		Total Power Array	/	
	43		7 m Array	•	Total Power Array	/	•
Resolution	43 0.3	✓ arcsec ▼	7 m Array 10 0 ✔	✓ arcsec ▼	Total Power Array	/	✓ arcsec ▼
Resolution Sensitivity (rms)	43 0.3 0.2	✓ arcsec ▼ MJy ▼	7 m Array 10 0 ✓ 2.4826852653365648 ✓ Unknown	✓ arcsec ▼ mJy ▼	Total Power Array 3 9.5 4.8501066820195	/	✓ arcsec ▼ mJy ▼
Resolution Sensitivity (rms) Equivalent to	43 0.3 0.2 22.828	✓ arcsec ▼ mJy ▼ mK ▼	7 m Array 10 0 ✓ 2.4826852653365648 ✓ Unknown	✓ arcsec ▼ mJy ▼	Total Power Array 3 9.5 4.8501066820195 0.174 60.32737	/	✓ arcsec ▼ mJy ▼
Resolution Sensitivity (rms) Equivalent to	43 0.3 0.2 22.828	✓ arcsec ▼ mJy ▼ mK ▼	7 m Array 10 0 2.4826852653365648 Unknown 74.32935	✓ arcsec ▼ mJy ▼ K ▼	Total Power Array 3 9.5 4.8501066820195 0.174 60.32737	/	 ✓ arcsec ▼ mJy ▼ mK ▼ s ▼

How to set up ALMA observations to obtain mm fluxes for a typical disk?

How to set up ALMA observations to map the disk structure?

How to set up ALMA observations to get gas line information?

Sz 83	RY Lup	Sz 98	Sz 129	Sz 111	MY Lup	Sz 71
•	0		•	0		•
Sz 68	J16083070-3828268	J16000236-4222145	Sz 114	J16070854-3914075	J16011549-4152351	Sz 133
Sz 65	Sz 118	V856 Sco	Sz 100	J15450887-3417333	Sz 123A	Sz 84
Sz 73	J16124373-3815031	Sz 108B	Sz 113	Sz 90	Sz 74	J16085324-3914401
J16090141-3925119	Sz 69	Sz 110	J15450634-3417378	Sz 66	Sz 72	Sz 103
Sz 117	Sz 81A	Sz 88A	Sz 131	J16081497-3857145	J16095628-3859518	J16102955-3922144
Sz 130	Sz 97	J16070384-3911113	Sz 96	Sz 95	J16092697-3836269	Sz 112
J16085373-3914367	Sz 104	J16080017-3902595	J16075475-3915446	J16000060-4221567	J16134410-3736462	Sz 106

Ansdell+2016

ALMA opens up statistical study of fundamental disk properties

PPVII review

dust mass in disks

Is the remaining disk material sufficient to form planets?

$$M_d = \frac{d^2 F_{\nu}}{\kappa_{\nu} B_{\nu}(T_c)}$$

Drazkowska+2023 PPVI Chapter

dust mass in disks

Scaling relation with stellar mass

Figure from Ansdell et al. 2017 Using results by Andrews+2013, Ansdell+2016/2017, Pascucci+2016, Barenfeld+2016

$$M_d = \frac{d^2 F_{\nu}}{\kappa_{\nu} B_{\nu}(T_c)}$$

dust mass in disks

Scaling relation with stellar mass

Figure from Ansdell et al. 2017 Using results by Andrews+2013, Ansdell+2016/2017, Pascucci+2016, Barenfeld+2016

$$M_{d} = \frac{d^{2}F_{\nu}}{\kappa_{\nu}B_{\nu}(T_{c})} \xrightarrow{\text{TRAPPIST-1 System}} \phi$$

dust disk size

Andrews 2020, ARA&A

The ALMA revolution of disk structure

CARMA 0.17"x0.13" Kwon+2011

ALMA 0.03" ALMAPartership+2015

Large mm dust

Planet induced vortex?

Dust "trap" in IRS 48

CO gas

Small micron grains

van der Marel+2013

CARGO STATE					
AA Tau	AB Aur	CIDA 9	CQ Tau	CS Cha	DM Tau
.0	•	•		0	0
•	-	o —	• —	o —	• -
DoAr44	GG Tau	GM Aur	HD100453	HD100546	HD135344B
0 -	0	0.			0
HD142527	HD169142	HD34282	HD97048	HP Cha	P Tau O
IRS48	J1604-2139 O	LkCa15	мно2	MWC758	PDS70
PDS99	RX J1842	RX J1852	RY Lup	RY Tau	SR21
SR245	Sz 91	rcha //	TW Hya °	UX Tau A	V1247 Ori

Francis & van der Marel 2020

Disks with large inner cavity (transition disks)

Pinilla+2018

A variety of morphological features observed in disks

Axisymmetric gaps and rings are the most common.

Bae+2023, PPVII review

Axisymmetric gaps and rings are the most common.

Varying numbers of ringsFound in all disk radii

Disk substructures are likely formed early and ubiquitous!

detections in protostellar disks (<1 Myr)

Shi, Long, Herczeg+2024

The origin of disk substructures

Many different approaches but hard to distinguish!

- MHD physics occurs on small scales, usually not detectable
- Grain growth assessment is often impeded by high optical depth
- Chemistry is often uncertain
- Planets are always obscured from our view!

The ALMA search of young planets - dust

Two young accreting giant planets in the PDS 70 (~5 Myr) disk cavity

HST - UV+optical *Zhou+2021*

VLT/MUSE - optical Haffert+2019

Circumplanetary Disks (CPD)

VLT/SPHERE - infrared *Keppler+2018*

ALMA - mm Benisty+2021

The ALMA search of young planets - dust

Long+2020, in prep

The ALMA search of young planets - gas kinematics

velocity kink in CO channel maps Location consistent with dust gap

The ALMA search of young planets - gas kinematics (CPD)

12CO kink feature at larger distance

Bae+2022

What can we use line data for?

Total gas mass from integrated line fluxes

What can we use line data for?

extended gas distribution in a small dust disk: efficient radial drift for CX Tau?

Contour: mm-continuum emission Color: CO emission

Facchini+2019

Measuring gas disk size (Key quantity of disk evolution)

Long+2022

What can we use line data for?

Measuring stellar mass using the near-Keplerian rotation of the disk gas

* degeneracy with disk inclination and distance

What can we use line data for?

Laws+2021

100 HD 163296 300 400 200 100 r [au]

> Optically thick lines indicate disk temperature

Lines with different optical depth trace different disk layers

The disk chemical diversity

The distribution of multiple species/transitions in one disk!

(*MAPS*: *Oberg*+2021)

The disk chemical diversity

Gas emission from five disks

Diverse morphology for a single species in different disks (related to e.g., UV field? dust structure)

(*MAPS*: *Oberg*+2021)

