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Note: here we only consider Newtonian (non-relativistic) fluid dynamics 
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What is a plasma?
Plasma is a state of matter comprising of fully/partially ionized gas.

A plasma is generally quasi-neutral and exhibits collective behavior.

Lightening The restless Sun Crab nebula

Net charge density averages 
to zero above microscale 
(i.e., Debye length).

particles interact with each other 
at long-range through electro-
magnetic fields (plasma waves).
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Why plasma astrophysics?

n More than 99.9% of observable matter in the universe is plasma.

n Magnetic fields play vital roles in many astrophysical processes.

n Plasma astrophysics allows the study of plasma phenomena at 
extreme regions of parameter space that are in general inaccessible 
in the laboratory.
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Astrophysical applications

Accretion disks Jets

(Collisionless) 
shocks

Galaxy clusters

7



Comparison of plasma and gas phases

Property Gas Plasma

Electrical conductivity Very low Usually very high (effectively 
infinite in most cases)

Independently acting 
species Usually, one Two or three (electrons, ions 

and sometimes neutrals)

Velocity distribution Maxwellian (due to 
frequent collisions)

Often non-Maxwellian: many
plasmas are collisionless

Interactions Binary collisions

Collective: organized motion 
by interacting with long-range 
electromagnetic fields in the 
form of plasma waves.
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Magneto-hydrodynamics (MHD)
MHD couples Maxwell’s equations with hydrodynamics to describe the 
macroscopic behavior of highly conducting fluid such as plasmas.

Ideal MHD involves several important approximations, as we list below.

1. Flow velocity is very non-relativistic.

Can be relaxed to formulate relativistic MHD.

2. Electric conductivity is so high that can be considered as infinite.

Can be relaxed to formulate non-ideal MHD.

3. Low-frequency, long-wavelength.

This is the key to the fluid description of plasmas (besides collisionalities).

We first formulate MHD equations from the above approximations, and then 
justify them (for 2 and 3). 10



Reduction of Maxwell’s equations

Starting from Maxwell’s equations:

~B/L ~E/cT~ (V2/c2) (B/L)

We focus on the non-relativistic regime where flow velocity v<<c.

[1]

[2]

[3]

[4]

(implied from [4])

Displacement current can be dropped.

E

B
⇠ L

cT
⇠ V

c

(implied from [2])

J =
c

4⇡
r⇥B The system can adjust its current adjusted 

instantaneously to match field configuration.  
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The induction equation
B field evolves according to the induction equation:

But what determines E?

The relation between E and E’ is given by a Lorentz transformation:

where again we have assumed v<<c.

With E’=0, the induction equation becomes

This leads to ideal MHD.

Under the assumption that the fluid is infinitely conducting: 

(in fluid rest frame)E0 = 0

12



Momentum equation
A conducting fluid is further subject to the Lorentz force:

However, the electric force about a factor (V/c)2 smaller and can be dropped.

Therefore, the MHD momentum equation simply reads:

~B2/L ~E2/L~(V2/c2)B2/L
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Summary: ideal MHD equations

@B

@t
= �cr⇥E = r⇥ (v ⇥B)

Induction equation (new addition):

Continuity equation (unchanged): 
@⇢

@t
+r · (⇢v) = 0

Thermal energy equation (unchanged in the current form):

@P

@t
+ v ·rP + �Pr · v = 0

Ds

Dt
=

@s

@t
+ (v ·r)s = 0 or

Momentum equation (now includes the Lorentz force): 
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Momentum conservation
With the addition of the Lorentz force, we note

magnetic 
tension

magnetic 
pressure

Momentum conservation becomes

where the stress tensor is

total pressure

One may further include viscous stress introduced earlier, and gravitational 
stress (for self-gravitating system) depending on application.
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l Imagine you have an infinitesimally small box.
l Forces are exerted on each face from the outside volume.
l The forces on each side have components in 3 directions.
l The stress tensor then includes all 9 quantities needed to 

describe these forces.

Understanding the stress tensor

Πxz

Πxy

ΠyxΠxx

Πyy

Πyz

Πzz

ΠzyΠzx
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More on magnetic tension and pressure
The Lorentz force is perpendicular to B, but magnetic pressure looks like an 
isotropic pressure. A better way to decompose the Lorentz force is as follows.

J ⇥B

c
=

(r⇥B)⇥B

4⇡
=

B ·rB

4⇡
�r

✓
B2

8⇡

◆

= 
B2

4⇡
�r?

✓
B2

8⇡

◆

Magnetic tension Magnetic pressure

Curvature:
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Magnetic flux conservation
@B

@t
= r⇥ (v ⇥B)The induction equation:

already implies B flux conservation. More importantly, 
it implies:

t

ΦB(t) ΦB(t+dt)

t+dt

The B flux through a co-moving fluid loop is constant 
(known as Alfvén’s theorem).

Proof:

V

V

Vdt

C

S
dl
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Flux freezing: physical meaning

t

ΦB(t) ΦB(t+dt)

t+dt

V

V
l The plasma can not move across B field lines.
l If two plasma elements are initially connected by 

a field line, they will remain connected.
l Magnetic topology is preserved in ideal MHD.

The frozen-in condition can break in non-ideal circumstances.

In ideal MHD, the magnetic field are plasma are 
“frozen-in” to each other.

In particular, magnetic reconnection is a process that breaks magnetic field 
topology. It generally involves kinetic effects beyond MHD (in collisionless
plasmas) and/or dissipation by resistivity.

We will briefly address this later.

Physically: charged particles are tied to field lines as they gyrate.
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Strong field: matter move along 
field lines (beads on a wire).

Weak field: field lines are 
forced to move with the gas.

Flux freezing with weak/strong field

Strength of the B field is commonly 
characterized by the plasma 𝛽 parameter:

� ⌘ Pgas

Pmag
=

8⇡Pgas

B2

21



Energy conservation
We can rewrite the energy conservation equation

Using                                 , we arrive at: 

the energy density:

and the stress tensor:

It has exactly the same form as HD energy equation except that we have updated
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Generalized Ohm’s law
We relax the assumption of infinite conductivity, which helps address the conditions 
under which ideal MHD fails.

The plasma is generally made of electrons and ions. Ions carry almost all the mass, 
representing the bulk plasmas. Here separate out the electrons (treated as a fluid).:

Being the lightest, e- almost instantly respond 
to EM fields (to avoid huge acceleration)
=> ignore inertia

“collision” with 
the bulk plasma

inertia pressure 
gradient

Lorentz 
force

The balance among the other 
terms determine the E field.
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Generalized Ohm’s law
Electric field is found to be:

Note:

We arrive at the generalized Ohm’s law:

Hall term resistivitye- pressure 
gradient
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Generalized Ohm’s law
Are additional terms in the generalized Ohm’s law important?

One can show that these two terms are relevant only at microscopic scales:

(ion inertial length)

While we have ignored electron inertia, one can also show that that term is 
relevant at even smaller scales:

(electron inertial length)

This gives one example that MHD applies only on macroscopic scales.
26



Applicability and limitations of MHD

n MHD applies to timescales much longer than 

n MHD applies to length scales much larger than 

n MHD requires the particle distribution function to be (at least 
approximately) isotropic and Maxwellian with Ti=Te.

⌧ � !�1
pe ,!

�1
pi ,⌦

�1
ce ,⌦�1

ci

e-/ion cyclotron frequencies
e-/ion plasma 
frequencies

L � �D, rLe, rLi, c/!pe, c/!pi

e-/ion Larmor radii e-/ion inertial lengths
Debye 
length
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Resistive MHD
We are left with the standard Ohm’s law:

where electric conductivity                          .

The induction equation now reads

@B

@t
= �cr⇥E = r⇥ (v ⇥B)

which finally becomes

where Ohmic resistivity is given by
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Resistive MHD

l Resistivity breaks the frozen-in condition, 
allowing filed lines to slide through the plasma.

Physically, this is due to particle collisions:

l Resistivity leads to energy dissipation (Ohmic heating). 

Energy conservation becomes: 

with the associated Ohmic heating:

where 
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When is resistivity important?
Order of magnitudes from 
the induction equation:

Even with large ReM for the bulk flow, resistivity can still play important roles at 
small scales (e.g., reconnection, discontinuities, turbulent dissipation).

~B/T ~BV/L ~ηB/L2

resistivity is dominant when ReM~1 or less.

Define the magnetic Reynolds number:

ReM ⌘ V L

⌘

In most astrophysical systems, this number is huge:

In the solar interior, ReM~1016

In a 1pc parcel of the ISM, ReM~1018
Flux freezing is valid.

30
The resistivity term is important in weakly ionized gas (to be discussed tomorrow).



Current sheet
Current sheet is a special example of tangential discontinuity.

B1

B2
P2= P1, 𝜌2= 𝜌1

P, 𝜌1

v=0

v=0

J

This configuration is the prototype 
for studying magnetic reconnection.

Leading to change of field topology with 
rapid dissipation of magnetic energy.

Strong current in the current sheet can 
lead to strong dissipation via resistivity.
The configuration is also subject to 
MHD instabilities (e.g., tearing mode 
and drift-kink).
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MHD waves
We consider perturbations on top of a static homogeneous plasma with uniform 
field B0, and start with linearized MHD equations (subscript 1 for perturbed quantities). 

We then decompose all perturbed quantities into Fourier modes in the form 
of                 to derive the dispersion relation.ei(!t�k·x)

Independent from others (in adiabatic MHD) 
=> entropy wave (v1=P1=B1=0)

Total of 8 equations (adiabatic MHD), with 7 degrees of freedom (since                  ): 
7 waves (1+2x3). For isothermal MHD, there are 6 waves (2x3).

r ·B1 = 0
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MHD waves
Without loss of generality, may take B0 to be along the z direction, and let the 
angle between k and z to be 𝜃.

After some algebra, we obtain

where cs =
p

�P0/⇢0 is the adiabatic sound speed as usual.

vA ⌘ B0p
4⇡⇢0

is the Alfvén speed whose meaning will become 
clear shortly.

This is a linear equation for v1, whose solution gives the dispersion relation.
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Alfvén waves
The linear equations permit an incompressible mode which is unique in MHD.  

For incompressible mode, k · v1 = 0

This gives the dispersion relation for Alfvén waves:

Nobel prize (1970) 
Hannes Alfvén

The above equation reduces to:

acceleration restoring force:

Lorentz force (magnetic tension)

35

magnetic tension force

! = ±k · vA along B0.

The physics is analogous to waves on a string:



Magnetosonic waves
There are two compressible modes with a dispersion relation:

They are know as fast (+) and slow (-) magnetosonic waves.

Analogous to sound waves modified by a B field.

The restoring force include contributions from both 
thermal and magnetic pressure. Roughly speaking:

l In a slow wave, the two effects are out of phase.
l In a fast wave, the two effects are in phase.

The general behaviors are complex and are better visualized in Friedrichs diagrams.
36



Friedrichs diagram

cs vA vA cs

kk

cs=0.5vA cs=2vA

The slow wave can not propagate orthogonally.
The fast wave propagate quasi-isotropically.
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Fluid/MHD instability: guiding principles

Consider a Lagrangian perturbation with displacement vector 𝝃 on top 
of an equilibrium configuration. 
In response to the perturbation there is a force F(𝝃).

Namely, the force encourages the displacements, making the perturbation grow.

⇠ · F (⇠) > 0This configuration is unstable if 

39



Fluid/MHD instability: linear analysis
In general, one needs to conduct standard linear analysis:

One can either adopt the Eulerian approach as we did before in linear waves, 
or the Lagrangian approach described by a displacement 𝝃 that satisfies

One can prove that in ideal MHD, solutions in ω2 is always real:

With linearized equations, we 
seek for solutions of the form:

an eigenfunction
(e.g., a Fourier mode)

l If ω2>0 for all solutions, then the equilibrium is stable (oscillatory).
l If ω2<0 for some solutions, then the equilibrium is unstable (exponential growth).
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Rayleigh-Taylor instability

Unstable because heavy fluid 
is placed above light fluid.

Can lead to substantial mixing

Crab nebula
It occurs in 
supernova 
explosions and 
subsequent 
evolution of the 
remnant
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Parker instability Parker 1966

Starting from a magneto-hydrostatic equilibrium in the galactic disk:

gas 
pressure

CR 
pressure

B field 
pressure

This configuration can 
be unstable at long 
wavelength due to 
magnetic buoyancy.

It may be responsible for the formation of molecular cloud.
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Kink instability

Tchekhovskoy & Bromberg, 2016

higher B pressure

lower B pressure

The distortion above leads to a difference in 
magnetic pressure that further enhances the 
distortion. 

Adding an axial field is stabilizing which offers 
a restoring force from magnetic tension.

Kink instability is closely related to the stability of astrophysical jets.
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n Including (a vertical, well-coupled) magnetic field 
qualitatively changes the criterion (even as B->0):

n Rayleigh criterion for unmagnetized rotating disks:

Confirmed experimentally (Ji et al. 2006).
All astrophysical disks should be stable against this criterion.

d(⌦R2)

dR
< 0 (Rayleigh, 1916)Unstable if:

Velikhov (1959),
Chandrasekhar (1960),
Balbus & Hawley (1991)

d⌦

dR
< 0Unstable if:

All astrophysical disks should be unstable!

Magnetorotational instability (MRI)
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Magnetorotational instability (MRI)

Edge on view: Face on view:

To the central star

Magnetic tension force behaves like 
a spring.

mo

mi

B0=Bz
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Local and global simulations of the MRI

from John Hawley 46



Summary

n Plasmas are ubiquitous in astrophysical systems.

n MHD, the fluid description of plasmas, is a long-
wavelength, low-frequency limit approximation.

n Lorentz force consists of magnetic tension and pressure.

n In ideal MHD, magnetic flux is frozen-in to the fluid, 
whereas resistivity breaks this condition.

n Three types of MHD waves: slow/fast magnetosonic
(compressible) waves, and the Alfvén wave (incompressible).

n There are a wide variety of HD/MHD instabilities with 
substantial astrophysical significance.
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Importance to preserve divergence of B

n For multi-dimensions numerical schemes, there is no guarantee 
that divergence of B is kept zero, due to truncation error.
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J ⇥B = �r ·
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Consequence:

Divergence error can accumulate, leading to inconsistent results 
over long term.
In some cases, it can lead to numerical instabilities and make the 
code crash…

spurious parallel 
acceleration



Techniques to preserve divergence of B

n Divergence cleaning:

n Use vector potential (usually used in finite-difference codes, e.g., Pencil)
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@A

@t
= v ⇥B , B = r⇥A

Div(B)=0 by construction, but need 
hyper-resistivity for stabilization.

Powell’s 8-wave scheme (Powell, 1999): 
Add source terms to momentum/induction equations to advect magnetic 
monopoles away. But: can give the wrong shock jump conditions.

Projection method (Brackbil & Bams, 1980):
Solve a Poisson equation for the “magnetic charge”:
Then clean the divergence field:
But: very expensive to solve elliptic PDE, and may smooth discontinuities in B.

�� = r ·B
B ! B �r�

Dedner’s scheme (Dedner et al. 2002): introducing a general Lagrangian
multiplier, transporting div(B) errors away. Reasonably robust in most cases.



Constrained transport (CT)
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Ez,i+1/2,j-1/2,k
Ez,i-1/2,j+1/2,k

Ex,i,j+1/2,k-1/2

Ex,i,j+1/2,k+1/2

Ey,i+1/2,j,k-1/2

Ey,i+1/2,j,k+1/2Magnetic fields defined at face-
center, area-averaged:

(Bx)i+1/2,j,k =
1

�y�z

Z

S
Bx(y, z)dydz

Electromotive forces (vxB) defined 
at edges, line-averaged:

(Ex)i,j+1/2,k�1/2 =
1

�x�t

Z
Ex(x)dxdt

Bn+1
x,i+1/2,j,k = Bn

x,i+1/2,j,k � �t

�y
(En+1/2

z,i�1/2,j+1/2,k � En+1/2
z,i�1/2,j�1/2,k) +

�t

�z
(En+1/2

y,i�1/2,j,k+1/2 � En+1/2
z,i�1/2,j,k�1/2)

Evolve magnetic field via Stoke’s law:
@

@t

Z

S
B · dS = �

Z

L
E · dl

These equations are exact: no approximations.

(Evans & Hawley, 1988)



Constrained transport (CT)
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Ez,i+1/2,j-1/2,k
Ez,i-1/2,j+1/2,k

Ex,i,j+1/2,k-1/2

Ex,i,j+1/2,k+1/2

Ey,i+1/2,j,k-1/2

Ey,i+1/2,j,k+1/2

Main challenge: construct electric fields at cell edges (3D) or corners (2D).

Div (B)=0 is preserved to machine 
accuracy: 

Updates in Div(B) corresponds to 
differences in the EMFs that cancel exactly. 

By arithmetic averaging the EMFs returned from the Riemann solvers (at face 
centers), the EMFs are not properly upwinded.
Need to reconstruct the EMF at the corners (Gardiner & Stone, 2005).

r ·B =
Bx,i+1/2,j,k �Bx,i�1/2,j,k

�x

+
By,i,j+1/2,k �Bx,i,j�1/2,k

�x

+
Bz,i,j,k+1/2 �Bz,i,j,k�1/2

�x

∆y

∆z


