Status and Astrophysical neutrinos of JUNO

Institute of High Energy Physics, Beijing, China

Yufeng Li (李玉峰)

@CCAST, Beijing, 2024

Jiangmen Underground Neutrino Observatory

Jiangmen Underground Neutrino Observatory (JUNO)

Approved in Feb. 2013. Ground-breaking in 2015. Construction to be completed in 2023.

A multiple-purpose neutrino experiment with rich physics programs:

Reactor v: Oscillation, spectrum

Atmospheric v

Solar v

> CCSN

DSNB (aka supernova relic v)

Dark matter

≻geo-vs

Nucleon decay

> 0vββ potential

Acrylic Sphere: ID: 35.4m Thickness:12cm

SS Lattice: ID: 40.1m OD: 41.1m 17612 20-in PMTs 25600 3-in PMTs

Water pool: ID: 43.5m Height: 44m Depth: 43.5m 2400 20-in PMTs JUNO Physics and Detector, arXiv:2104.02565

Jiangmen Underground Neutrino Observatory

A multi-purpose observatory

Mass Ordering

CCSN: core-collapse supernova

Detector progress

2

Overview of Installation Process

Bird's Eye View of the Detector

Bird's Eye View of the Detector

Bird's Eye View of the Detector

Inside the Acrylic Sphere

Inside the Acrylic Sphere

Between the Acrylic and the PMTs

Detector construction status

Acrylic panels

- All the panels are ready for shipping
- More than half sphere is finished
- Stainless Steel structure
 - Finished in June 2022
- 20012 20" PMTs + 25600 3" PMTs
 - Production and performance test done
 - ~7000 LPMT and ~9000 SPMT have been installed
- Liquid scintillator (20 kt)
 - Purification plants finished onsite construction
 - Under commissioning now

Taishan Antineutrino Observatory (TAO)

Goals:

- 1. Measure the reactor antineutrino spectrum with unprecedented energy resolution and see its fine structure for the first time.
- 2. Provide a reference spectrum for JUNO, other experiments, and nuclear databases
- 3. Search for light sterile neutrinos
- 4. Make improved measurements of isotopic yields & spectra

Constrain the fine structure in [2.5,6] MeV to < 1%

Baseline

Coverage

Energy resolution

Light Collection

✓ SiPM is used to achieve high light yield with ~94% coverage

→ 4500 PEs/MeV & energy resolution < 2% @ 1 MeV

- ✓ Gd-LS works at -50°C to lower the dark noise of SiPM
 - 1:1 Prototype ongoing at IHEP Data-taking by 2024

Physics Sensitivities

For topics not covered here, please refer to PPNP 123 (2022) 103927

0.22

Reactor Antineutrino Oscillation & Detection

 $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21},$

(matter effect contributes maximal ~4% correction at around 3 MeV, arXiv:1605.00900, arXiv:1910.12900)

 $\bar{v}_e + p \rightarrow e^+ + n$

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 → 47	-	-
Geo-v's	1.1 → 1.2	30%	5%
Accidental signals	0.9 → 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
¹³ C(<i>α</i> , <i>n</i>) ¹⁶ O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $v's$	0 → 0.16	50%	50%

JUNO physics book (J. Phys. G43:030401(2016)) → updated values

- Signal and backgrounds now assessed with full JUNO simulation
 Slight less overburden
- Lower radioactivity background based on latest measurements on material radiopurities

- 2 fewer reactor cores in Taishan
- Better muon veto strategy
- ☑ Improved energy resolution:
 3.0% @1MeV → 2.9% @1MeV

Neutrino Mass Ordering

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure

Combined reactor + atmospheric neutrino analysis is in progress: further improve the NMO sensitivity

Neutrino oscillation parameters

arXiv:2204.13249, Chin. Phys. C 46 (2022) 123001 Precision of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$ in 6 yrs

The improvement in precision over existing constraints will be about one order of magnitude

Atmospheric Neutrinos

3D atm-v flux calculation based on:

- Primary cosmic ray flux
- Rigidity cut, depends on geomagnetic field and rigidity of cosmic ray particle
- Hadronic interaction model, air profile and mesonmuon decay

Evaluation of GeV v interaction models

• GENIE, GiBUU, NuWro, NEUT

Energy/direction reconstruction, PID

Physics potentials

Atmospheric neutrinos

Precision measurement of low energy atmospheric neutrino fluxes

MSW effect \rightarrow Neutrino Mass Ordering (NMO) \rightarrow Independent measurement from reactor antineutrinos

Critical techniques: energy and angular resolutions, flavor and $\nu/\bar{\nu}$ identifications

JUNO sensitivity on NMO: 0.7~1.4 σ (atmospheric only) @ ~6 yrs exposure

Updated sensitivity based on ML-based reconstruction and PID performance

Atmospheric neutrinos

• Very promising reconstruction technique (ML based) under development to extract directionality, energy, flavor identification of atmospheric *v*'s

[1] DOI: <u>10.5281/zenodo.6769313</u>. [2] DOI: <u>10.5281/zenodo.6782362</u>. [3] DOI: <u>10.5281/zenodo.6804861</u>.

➔ Significant enhancement on NMO sensitivity from atm-v, stay tuned

Neutrinos from Sun

Intermediate-E High-E (⁸B) (⁷Be, pep, CNO) 10¹³ 10¹² pp (±0.6%) 10¹ 7Be (±6%) 10^{10} Flux [cm⁻²s⁻¹] pep (±1%) 10⁸ ⁸B (±12%) 1 0⁶ 10⁵ 10^{4} hep (±30%) 10^{3} 10² Low-E 10^{-1} 10 Neutrino Energy [MeV]

- JUNO has strong capability of simultaneously detecting B8 (<u>2006.11760</u>) and Be7, pep and CNO solar neutrinos (<u>2303.03910</u>)
- Physics topics
 - Independent θ_{12} , Δm_{21}^2
 - Periodic modulations (Day-Night Asymmetry)
 - Flux measurement
- Background rejection is the key
 - Good LS internal radio-purity (10⁻¹⁷ g/g)
 - Excellent muon veto to remove long-lived cosmogenic isotopes

Neutrinos from Sun (Be7, pep and CNO)

Radio- purity Scenario		⁴⁰ K	⁸⁵ Kr	²³² Th-chain	²³⁸ U-chain	²¹⁰ Pb/ ²¹⁰ Bi	²¹⁰ Po
$\frac{c \left[\frac{g}{g}\right]}{BD}$		1×10^{-16}	-	1×10^{-15}	1×10^{-15}	$5 imes 10^{-23}$	-
	$R\left[\frac{\text{cpd}}{\text{kt}}\right]$	2289	5000	3508	15047	12031	12211
Baseline	$c \left[\frac{g}{g} \right]$	1×10^{-17}	-	$1 imes 10^{-16}$	1×10^{-16}	$5 imes 10^{-24}$	-
	$R\left[\frac{\mathrm{cpd}}{\mathrm{kt}}\right]$	229	500	351	1505	1203	1221
Ideal	$c \left[\frac{g}{g} \right]$	1×10^{-18}	-	$1 imes 10^{-17}$	$1 imes 10^{-17}$	1×10^{-24}	-
	$R\left[\frac{\mathrm{cpd}}{\mathrm{kt}} ight]$	23	100	35	150	241	244
Borexino	$c \left[rac{\mathrm{g}}{\mathrm{g}} ight]$	-	-	${<}5.7\times10^{-19}$	${<}9.4\times10^{-20}$	-	-
	$R\left[\frac{\text{cpd}}{\text{kt}}\right]$	4.2	100	1.4	2	115	446.9

NOTE: Contribution from pileup and reactor neutrinos found negligible in the ROI No detector systematics is included

arxiv:2303.03910, JCAP 10 (2023) 022

 $\Delta\chi^2$

 $\Delta m^2_{21} [10^{-5} eV^2]$

0.15

Neutrinos from Sun (B8)

Model independent measurement of ⁸B-v flux (~5%) and solar oscillation parameters

Periodic modulations of Solar neutrinos

Periodic modulations of Solar neutrinos

- Seasonal modulation
 - Vacuum oscillation
 - Eccentricity of the Earth's orbit
- Day-Night Asymmetries
 - Earth matter effects
- Solar gravity modes (or g modes)
 - oscillations of the solar interior

arxiv:2303.03910, JCAP 10 (2023) 022

Supernova Explosion

Predictions of Signals from Supernovae

Supernova Neutrino Emission

Wellunderstood, regarded as a "standard candle"

Multi-messenger Signals

Large liquid scintillator detectors, like JUNO, has great potential on detecting both pre-SN and SN

Pre-SN neutrinos

- ~MeV neutrinos, much lower luminosity than SN burst neutrino
- visible ~days before core collapse for nearby galactic progenitors

• SN burst neutrinos

- Few tens of MeV neutrinos, last for ~10s with burst, accretion and cooling stages
- Background almost free for SN burst neutrinos

CCSN potential at JUNO

Multi-channel detection, all flavors

~5000 IBD, ~300 eES, ~2000 pES, ~200 12 C CC, ~300 12 C NC @10 kpc

- Early warning
- CCSN Characteristics
 - Time evolution & Energy spectra
 - Total energy, luminorsity

10^{5} 12 C NC, E_v^{th} = 15.1 MeV 10^{4} IBD, $E_v^{th} = 1.8 \text{ MeV}^{-1}$ ¹³C NC, ¹³C NC. $E_v^{th} = 7.5 \text{ MeV}$ V-pES 10^{3} $E_{v}^{th} = 3.7 \text{ MeV}$ $E_d dN/dE_d$ 10^{2} 10 128 C EV 14 PNCC, EV = 17.3 Me 1 0.1 0.2 10 50 100 E_d [MeV]

Neutrino properties

- Mass ordering
- Absolute mass
- New physics

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values				
Channer	rype	12 MeV	$14 { m MeV}$	$16 { m MeV}$		
$\overline{\nu}_e + p \to e^+ + n$	CC	4.3×10^3	5.0×10^3	5.7×10^3		
$\nu + p \rightarrow \nu + p$	NC	$0.6 imes 10^3$	1.2×10^3	$2.0 imes 10^3$		
$\nu + e \rightarrow \nu + e$	\mathbf{ES}	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$		
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	3.2×10^2	$5.2 imes 10^2$		
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	CC	$0.5 imes 10^2$	$0.9 imes 10^2$	$1.6 imes 10^2$		
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$0.6 imes 10^2$	$1.1 imes 10^2$	$1.6 imes 10^2$		

Early Warning

- Prompt and Online monitor systems designed for SN Early Warning
 - Non-stop, continuous monitoring even from the LS filling period
 - Not affected by any Run Modes (physics, calibration, diagnostic, etc)
- DAQ design can fulfil the requirements on SN data taking
 - For >1kpc CCSN: No data loss
 - For <1kpc CCSN: acquire maxi. data as we can
 - For each PMT channel, real-time waveform processing at FPGA to extract (T, Q)

Alert Capability

Garching

CCSN

warning

reach 240 ~ 400 kpc w/ 50% prob.

Excellent capability of early

- alert in 10 ~ 30 ms
- pre-SN:
 - reach 0.6 ~ 1.7 kpc w/ **50% prob.**
 - >~ 100 hr in advance if 0.2 kpc

JCAP 01 (2024) 057 arXiv: 2309.07109 [hepex|

Nakazato

Spectral reconstruction

Full flavor SN neutrino energy spectra reconstruction in JUNO detector

- Model independent
- v_x spectra reconstructed via pES
- promising for global analysis with all channels and other WC, Lar-TPC, et.al detectors.

Li, Li, Wang, Wen, Zhou, PRD, 2018 Li, Huang, Li, Wen, Zhou, PRD, 2019

Particle Physics

Time delay of massive neutrinos:

$$\Delta t(m_{\nu},E_{\nu}) \simeq 5.14 \text{ ms } \left(\frac{m_{\nu}}{\text{eV}}\right)^2 \left(\frac{10 \text{ MeV}}{E_{\nu}}\right)^2 \frac{D}{10 \text{ kpc}}$$

- Flavor conversion
 - MSW effects

Fast and slow collective oscillations

• Neutrino mass ordering:

Spectral comparison

Time profile

- New particle and new physics
 Axion (ALP)
 keV sterile neutrinos
 - Dipole portal

••• ••• •••

 \rightarrow Rich program to be explored!

Diffuse Supernova Neutrino Background (DSNB)

DSNB: 2-4 events in JUNO per year

$\checkmark~$ Not detected yet

Holding:

- Supernova (SN) rate (*R_{SN}*(0))
- Average energy of SN neutrinos $(\langle E_{\nu} \rangle)$
- Fraction of black hole (*f*_{BH})
- Dominant background (above 12 MeV):
 ✓ Atm-v NC interactions
- Highlights on background suppression
 - ✓ Muon veto
 - ✓ Pulse shape discrimination (PSD) technique
 - ✓ Triple coincidence (¹¹C delayed decay)

Improvements compared to JUNO physics book J. Phys. G43:030401(2016) :

- ✓ **Background evaluation:** 0.7 per year → 0.54 per year
- ✓ **PSD:** signal efficiency $50\% \rightarrow 80\%$ (1% residual background)
- Realistic DSNB signal model: non-zero fraction of failed Supernova

Diffuse Supernova Neutrino Background (DSNB)

arXiv: 2205.08830, JCAP 10 (2022) 033

If no positive observation, JUNO can set the world-leading best limits of DSNB flux

• With the nominal model (black solid curve (left plot)): 3σ (3 yrs) and 6σ (10 yrs)

Indirect Dark Matter Search

- Neutrinos (other "invisible particles") from Dark Matter
 - Dark Matter captures in the solar core, Earth, Milky Way
 - Neutrinos from Dark Matter annihilation or decays
 - See JUNO Yellow Book, & W.L Guo, JCAP 01 (2016) 039
- Boosted dark matter, new particles produced in the atmosphere
 - many new ideas

$\frac{DM + DM}{\rightarrow \nu + \overline{\nu}}$

Indirect Dark Matter Search

- DM annihilation into neutrinos in the Milky Way
- DM masses: 10 100 MeV
- Detection channel in JUNO: IBD
- Backgrounds: DSNB, atm-v NC/CC (dominant), fast neutron, reactor
 - PSD technique to suppress atm-v NC and fast neutron

arXiv:2306.09567 [hep-ex]

Physics	Sensitivity
Neutrino Mass Ordering	3σ in 6 yrs by reactor neutrinos. <i>Atmospheric v sensitivity to be improved</i>
Neutrino Oscillation Parameters	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{31} < 0.5\%$ in 6 yrs
Supernova Burst (10 kpc)	~7300 of all-flavor neutrinos
DSNB	3σ in 3 yrs
Solar Neutrino	Measure ⁷ Be, pep, CNO simultaneously, measure ⁸ B flux independently
Nucleon Decays $(p \rightarrow \overline{\nu}K^+)$	9.6×10 ³³ years (90% C.L.) in 10 yrs
Geo-neutrino	~400 per year, 5% measurement in 10 yrs

Back up

Neutrinos from earth

 \overline{v}_e from ²³⁸U and ²³²Th decay chains in earth

Signal in JUNO (CRUST1.0): 39.7 +6.5 –5.2 TNU (~400 geo-vs per year), 5% measurement in 10 years.

JUNO can observe as much geo-v as Borexino and KamLAND for the whole time combined in 1 yr.

With new Local Refined Crust model (*PEPI*, 299 (2020) 106409), the geo-v signal is ~30% larger, updated sensitivity is on-going.

Nucleon decays

- Signature: three-fold coincidence
- Dominant background: atmospheric neutrino interactions

Type	Ratio (%)	Ratio with E_{vis} in [100 MeV, 600 MeV](%)	Interaction	Signal characteristics
NCES	20.2	15.8	$ \begin{array}{l} \nu + n \rightarrow \nu + n \\ \nu + p \rightarrow \nu + p \end{array} $	Single Pulse
CCQE	45.2	64.2	$ \bar{\nu_l} + p \rightarrow n + l^+ $ $ \nu_l + n \rightarrow p + l^- $	Single Pulse
Pion Production	33.5	19.8	$ \begin{array}{c} \nu_l + p \rightarrow l^- + p + \pi^+ \\ \nu + p \rightarrow \nu + n + \pi^+ \end{array} $	Approximate Single Pulse (Second pulse too low)
Kaon Production	1.1	0.2	$ \begin{array}{l} \nu_l + n \rightarrow l^- + \Lambda + K^+ \\ \nu_l + p \rightarrow l^- + p + K^+ \end{array} $	Double Pulse

 $p \to K^+ + \overline{\nu}$

Prompt pulse

- Disentangle pile-up of signals with 3-inch PMTs
- Multiplicity, spatial distribution of Michel e- and neutrons in the FSI
- Expect sensitivity: 9.6×10³³ years (90% C.L.) for 200 kton*yrs exposure

Super-K (2014): >5.9 \times 10 33 yrs @ 260 kton·yr

Requirement for rich physics program

For solar neutrinos: tighter requirements on Liquid Scintillator (LS) radiopurity by 1~2 orders of magnitude.

Clean installation

Update of energy resolution

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11% ↑		arXiv: 2205.08629
New Central Detector Geometries	+3% ↑	2.9% @ 1MeV	
New PMT Optical Model	+8% ↑		EPJC 82 329 (2022)

- **Cherenkov** radiation •
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- **Detector uniformity and reconstruction** ٠

 $\frac{\sigma}{E} = 1$

Photon statistics

Positron energy resolution

- Firstly attempt to constrain kB & fC with Daya Bay LS nonlinearity
 - Strong correlation between kB and fC
- Solved by combining a series of table-top measurements on scintillation quenching effect Annihilation-induced γs
 - kB of LS is determined to be 12.05×10^{-3} g/cm2/MeV

 $kB = 12.05 \times 10^{-3}$ g/cm2/MeV

Reference [1]

eference [6] Position:0 degree Reference [6] Position:-10 degree

eference [6] Position:+10 degree

- **Re-constrain fC with Daya Bay LS**
 - non-linearity

0.6

0.5

fC is determined to be 0.517

Electron data

 E_{true} [MeV]

- Scintillation quenching effect
 - LS Birks constant (**kB**)
- **Cherenkov radiation**
 - LS refractive index
 - LS re-emission probability
 - Cherenkov yield scale factor (fC)

 $\left(\frac{a}{\sqrt{E}}\right)^{-} + b^2 + \left(\frac{c}{E}\right)^{2}$

Dark noise

- **Detector uniformity and reconstruct**
- **kB** & **fC** are key parameters to predict energy resolution

Light yield evolution

PMT PDE

- Averaged PDE:27.0% \rightarrow 30.1%
- 27.0% is based on the original requirement of QE~30%, CE~90%
- 30.1% is the selected mean PDE, from PMT mass testing system

•

New PMT Optical Model

Optical Processes in PMT

- Reflection on photocathode
- PDE angular response
- Multiple reflections inside

- Experimental tests
- **GEANT4** simulation

Diffuse Supernova Neutrino Background

Major backgrounds (above 12 MeV):

- Fast neutron → Two fiducial volumes
- Atmospheric neutrino CC interactions (intrinsic IBDs)
- Atmospheric neutrino NC interactions
 - Prediction → v-N interactions (GENIE, NuWro) + TALYS (de-excitation) method Ref: Phys.Rev.D 103 (2021) 5, 053001
 - Uncertainty → Future *in situ* meas. (~15% after ten years) *method Ref: Phys.Rev.D* 103 (2021) 5, 053002
 - Discrimination → PSD technique & Triple coincidence (¹¹C delayed decay)

- Different time profiles of signal and background lay the foundation of pulse shape discrimination
- Machine-learning based PSD analysis
 - TMVA (baseline), Scikit-learn (cross check)
- Final PSD efficiency at 1% residual background
 - FV1 (84%), FV2 (77%) versus 50% in JUNO (2015)
- Energy dependent feature of PSD in DSNB analysis (first time found in LS detectors)
 - Energetic neutron below 18 MeV in LS: the inelastic reaction channel of ¹²C with gamma production becomes dominate

Central detector (SS structure)

Acrylic vessel is supported by D = 40.1 m stainless

steel structure via 590 Connecting Bars

Assembly precision: < 3 mm for each grid

The SS structure has been finished in June 2022

The platform to install the acrylic vessel

Central detector (acrylic vessel)

LS container:

Inner diameter: 35.40±0.04 m

Thickness: 124±4 mm

Light transparency > 96% @ water Radiopurity: U/Th/K < 1 ppt

Central detector (acrylic vessel)

LS container:

Inner diameter: 35.40±0.04 m

Thickness: 124±4 mm

Light transparency > 96% @ water Radiopurity: U/Th/K < 1 ppt

More than half acrylic sphere was finished! 52

Veto detector (Water Cherenkov)

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu}$ = 4 Hz in LS, $\langle E_{\mu} \rangle$ = 207 GeV

Earth magnetic shielding coils installation:

6 coils installed (32 coils in total)

200 veto PMTs installed (~10% of PMT)

Water system almost ready for commissioning

35 kton of ultrapure water serving as passive shield and water Cherenkov detector.

- ✓ 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%
- ✓ Keep the temperature uniformity $21^{\circ}C \pm 1^{\circ}C$
- ✓ Quality: 222 Rn < 10 mBq/m³, attenuation length 30~40 m

Veto detector (Top Tracker)

Plastic scintillator from the OPERA experiment (NIM.A 1057 (2023) 168680)

- About 50% coverage on the top, three layers to reduce accidental coincidence
- All scintillator panels arrived on site in 2019
- Provide control muon samples to validate the track reconstruction and study cosmogenic backgrounds

Status:

- The TT scintillator detector is onsite.
- The TT support bridge is ready for production.

Liquid scintillator (20 kton)

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

All LS related systems finished assembly, commissioning ongoing

SS pipes to underground

Online Scintillator Internal Radioactivity Investigation System (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and

during filling to the central detector

- ✓ Few days: U/Th (Bi-Po) ~ 1×10^{-15} g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1 × 10^{-17} g/g (solar ideal case)
- $\checkmark~$ Other radiopurity can also be measured: $^{14}C,\,^{210}Po$ and ^{85}Kr

Eur.Phys.J.C 81 (2021) 11, 973

Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator): arXiv: 2109.10782

✓ A precision measurement of the flux of solar pp neutrinos on the few-percent level

Ծանություն,

DCR [kHz]

All PMTs	produced.	tested. a	and	instrumented	with	waterproof	potting
	pi o a a o o a,					mator proor	potting

		LPMT (20	-inch)	SPMT (3-inch)
		Hamamatsu	NNVT	HZC
Quantity		5000	15012	25600
Charge Collection		Dynode	MCP	Dynode
Photon Detection Efficiency		28.5%	30.1%	25%
Mean Dark Count Rate [kHz]	Bare	15.3 49.3		0.5
	Potted	17.0	31.2	0.5
Transit Time Spread (σ) [ns]		1.3	7.0	1.6
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs
Coverage		75%		3%
Reference		arXiv: 2205.08629		NIM.A 1005 (2021) 165347

12.6k NNVT PMTs with highest PDE are selected for light collection from LS and the rest are used in the Water Cherenkov detector.

Photomultiplier Tubes

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Clearance between PMTs: 3 mm \rightarrow Assembly precision: < 1 mm **w/ protection cover** (JINST 18 (2023) 02, P02013)

~5800 (CD) + ~200 (veto) LPMT and ~6000 SPMT have been installed

Calibration

1.04 JHEP 03 (2021) 004 1.02 n-12C n-H щ^{ер} 0.98 ⁶⁰Co Ш 0.96 Data ⁵⁴Mn 0.94 Best fit ¹³⁷Cs 0.92 0.2 Residual bias [%] 0.1 -0. True gamma energy [MeV 1.08 1.06 1.05 ¹21.0⊿ ⊔ Uncertaintv ய^{്≊}1.02 Inherent nonlinearity 1.01 Best fit Uncertainty 0.99 0.98 3 4 5 True electron energy [MeV] 2

59

1D,2D,3D scan systems with multiple calibration sources to control the energy scale, detector response non-uniformity, and < 1% energy non-linearity

Cable system finished prototype test

Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%