

The 4th CCAST Workshop on the JUNO related theory and phenomenology: Astrophysical Neutrinos, CCAST, April 28–29, 2024

東京大学 THE UNIVERSITY OF TOKYO

Neutrinos in the Universe from Big-Bang to Supernova and Origin of Life

Taka Kajino 梶野 敏贵 Beihang University/NAOJ/University of Tokyo

Cosmic Evolution of Elements & Roles of Neutrinos

Multi-messenger Era with GW, γ , ν , Nuclei

Gravity, EM, Weak, Strong — 4 fundamental

forces

Purpose

Nuclear & Particle Physics

JUNO, SK/HK ... ν-facilities will determine the vnature in vacuum at high precision of 3-5σ C.L.
HI accelerators at HIAF, RIKEN, RCNP, FRIB, FAIR, RAON... are/will be in operation.

Nuclear Astrophys. & Cosmology

Clarify the challenging unsolved questions, i.e. origin of elements & v-matter interactions, to ultimately constrain v-mass hierarchy.

Today's Goal

We elucidate the roles of v-matter interactions in nucleosyntheses from the Big-Bang to Sun-Supernova-Life.

SUCCESS in Big-Bang Cosmology, based on;

1. Cosmic Microwave Background Anisotropies

2. Big-Bang/Primordial Nucleosynthesis

Cosmological "Lithium" Problem !

Consistency among Light Elements?

Possible Solutions?

- 1. Cosmology
 - CMB + v + Mag. Fluct.
- 2. New Physics
 - -v mag. moment (m_v \neq 0)
 - Decay of Particles
- 3. Nuclear Physics - Reaction cross sections
- 4. Astron. Observation

 ⁴He in metal-poor galaxies

The Power of Quantum Mechanics and Relativity

Quantum Systems of Particles and Nuclei

- Elementary Particles; Relativistic
- Atomic Nuclei; Non-relativistic
- Fermi vs. Bose Statistics Planckian Maxwell-Boltzmann

Expansion Dynamics

- Einstein Eq.
- Fluid Dynamic. Eq.

Reaction Network

$$n_{i}(p)dp = \frac{1}{2\pi^{2}}g_{i} p^{2} \left[\exp\left(\frac{E_{i}(p) - \mu_{i}}{kT}\right) \pm 1 \right]^{-1} dp$$

$$\rho_{i} = \int p \left[n_{i}(p) + n_{\overline{i}}(p) \right] dp$$

$$\rho_{\gamma} = \frac{\pi^{2}}{15}(kT_{\gamma})^{4} , \rho_{\nu_{i}} = \frac{7}{8}\frac{\pi^{2}}{15}(kT_{\nu})^{4}$$
CMB Fluctuation Anisotropies
$$H^{2}(\iota) - \left(\overline{R} \ dt\right) = 2\mu \pm 2\pi^{2}$$
Fluctuations of Primordial Magnetic Field ?

$$dn_i/dt = \sum_{kl \, j} \langle \sigma_{kl \to ij} \, v \rangle n_k n_l - \sum_{j \, kl} \langle \sigma_{ij \to kl} \, v \rangle n_i n_j - n_i/\tau_i$$

- Nuclear (strong), Electro-magnetic, and Weak interactions

CMB Anisotropy and Polarization exhibit a signal of v mass and Primordial Magnetic Field (PMF) !

Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; PR D81 (2010), 023008; PR D81 (2010), 103519; PRD, 77, 043005 (2008); ApJ 825 (2006), L1.

Signal of v mass

Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; Kojima, Ichiki, Yamazaki, Kajino & Mathews, Phys. Rev. D78 (2008), 045010.

 $m_v = 0$

At smaller (angular) scales !

1. Cosmological Solution ?

$$\begin{split} \rho_{\lambda} &= \frac{\langle B^2 \rangle}{8\pi} = \frac{1}{8\pi} \int_{k_{[min]}}^{k_{[max]}} \frac{dk}{k} \frac{k^3}{2\pi^2} P_{[PMF]}(k) \\ B^2 \propto P_{[PMF]} = Ak^{n_B} \quad \text{CMB power law spectrum} \end{split}$$

PMF (**B**-field) & **T**-fluctuation

Thermonuclear Reaction Rate: $\langle \sigma \nu \rangle(T) = \left(\frac{\mu}{2\pi kT}\right)^{3/2} \int_0^\infty v \cdot \sigma(v) \cdot \underline{P(v)} \cdot 4\pi v^2 dv$ $f(\beta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(\frac{\pi g}{30} \cdot (T_{eff}^4 - \beta^{-4}) - \rho_{\lambda})^2}{2\sigma^2}\right] \cdot \frac{2\pi g}{15}\beta^{-5}$ $P(v) = \int d\beta p(v|\beta) f(\beta)$ Temp. Fluctuation \rightarrow various T= β^{-1} 2.5 Coulomb Penetration Factor Gamow Window (e.g. $T_9=0.3$) 10^{2} Yudon Luo, T. Kajino, et al., ApJ ×10⁻⁶ 872 (2019), 172. Distribution function \mathbf{f}_{1} 10¹ Only ~ 50% reduction of $\sum_{i}^{1} \times e^{-2\pi\eta(E)}$ Maxwell-Boltzman 10⁰ factor ~3 over-poduction of **Big-Bang Li problem! Fluctuating PMF** 10-1 Similar to "Tsallis Distrib. (1<q)" 10⁻² Hou, He, Parikh, Kahl, Bertulani, Kajino, Mathews & Zhao, ApJ. 834 (2017), 165. 10-3 0 ٦ 0.05 0.25 0.3 0.35 0.4 0.1 0.15 0.2 0.45 0.5 E_{CM} (MeV)

2. New Physics ? : BBN constraint on neutrino magnetic moment

3. Nuclear Physics Solution ?

Big-Bang Nucleosynthesis

G. Gamow predicted nucleosynthesis. (1948) Spite & Spite observed ⁷Li. ('1980–)

First 3 min

Sun Today

Solar Fusion

W. Fowler predicted solar v-flux. (1958) R. Davis detected. (1969–)

$$p + p \rightarrow 2H + e^{+} + v_{e} \qquad p + e^{-} + p \rightarrow 2H + v_{e}$$

$$y = y + e^{-} + p \rightarrow 2H + v_{e}$$

$$y = y + e^{-} + p \rightarrow 2H + v_{e}$$

$$p = p = V (1.445MeV)$$

$$2H + p \rightarrow 3He + \gamma$$

$$3He + 3He \rightarrow 4He + p + p$$

$$y = 1$$

$$3He + 4He \rightarrow 7Be + \gamma$$

$$3He + 4He \rightarrow 7Be + \gamma$$

$$3He + 4He \rightarrow 7Be + \gamma$$

$$3He + 9 \rightarrow 4He + e^{+} + v_{e}$$

$$hep = V$$

$$7Be + e^{-} \rightarrow 7Li + v_{e}$$

$$7Be + p \rightarrow 8B + \gamma$$

$$7Be + e^{-} \rightarrow 8B + \gamma$$

$$7Be + e^{-} \rightarrow 8B + \gamma$$

$$7Be + e^{-} \rightarrow 8Be^{+} + v_{e}$$

$$8B \rightarrow 8Be^{+} + e^{+} + v_{e}$$

$$8B = 8Be^{+} + 4He$$

$$8B \rightarrow 8Be^{+} + 4He$$

$$8B \rightarrow 8Be^{+} + 4He$$

$$9p = Hi$$

⁴He(³H,γ)⁷Li

Mirror

⁴He(³He,γ)⁷Be

Kajino, He, Yao et al. (2024), World Scientific, in press.

Li problem in Red-Clump Stars

Kumar et al. (2020), Nature Astron.

二十一世纪未解物理之谜

Unsolved Mysteries of Physics in the 21st Century

US Academy of Science selected 11 greatest unanswered questions in modern physics:

- 比铁重的元素是如何产生的? How were the heavy elements made?
- 为什么中微子有质量? Why do neutrinos have mass? Mass hierarchy constrains total v-mass (beyond the standard model).

11个将夸克与宇宙联系起来的世纪难题

Standard Model of Elementary Particles

Cosmic Evolution & Origin of Matter (Elements & Life)

Multi-messenger Era with GW, γ , ν , Nuclei

Gravity, EM, Weak, Strong — 4 fundamental

 $\sim 10^8 - 10^9 \text{ y}$

forces

Cosmic & Galactic Evolution Model

Big-Bang \rightarrow 1st stars form in the galaxies

Star Birt

FOO.

- \rightarrow SNe explode and stellar winds eject elements and heat
- \rightarrow next generations of stars form ...

Stellar Evolution

P. C.LO.

Mixing with Interstellar gas Lifetime τ (m)

Explode or Stellar wind

Astrophysical Candidates for R-Process

BINARY Stars

Neutron Star Merger

Time Delay : 100 My < τ < 10 Ty

Lorimer, Living Rev. Rel. 11(2008), 8. Beniamini+ (2019), Timmes+ (1995)

Failed SN \rightarrow Collapsar

MacFadyen, Woosley, ApJ 524 (1999), 262; Nakamura, Kajino, Mathews, Sato & Harikae, A&Ap 582 (2015), A34; Yamazaki, et al. (2022).

Super-Luminous SN/Hypernova

Siegel, Barnes & Metzger, Nature 569 (2019), 243.

SINGLE Star

CCSN II : v-DW & MHD Jet

Neutron Star

ATT 2008 Dec: 1 21:21:28 COM011_00Ea

Neutron Star Merger

Kajino, Aoki, Balantekin, Diehl, Famiano, Mathews, Prog. Part. Nucl. Phys. 107 (2019) 109-166.

Supernova

Cosmic & Galactic Evolution : CCSNe, NSMs, Collapsars

Observed EVENT RATES

Contribution = Ejected Mass $[M_{\odot}]$ x Event Rate [/Galaxy/Century]

vSNe (Weak r) = $7.4 \times 10^{-4} \times (1.3 \pm 0.6)^{a}$

MHD Jet SNe = $0.6 \times 10^{-2} \times ((0.03 \pm 0.02) \times (1.3 \pm 0.6))^{b}$

* Binary NSMs (Short-GRB) = $(2 \pm 1) \times 10^{-2} \times (1-28) \times 10^{-3} \text{ c}$

* Collapsars (Failed SN) = Assuming to be the same as MHD Jet SNe

Observations a 1.9±1.1[∗] Diehl, et al., Nature 439, 45 (2006). *1.3±0.6 (2018) b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012).

Obs. Est. c (1-28) x 10⁻³ Kalogera, et al., ApJ 614, L137 (2004).

★ Binary NSM ← Central engine of Short-GRB

- GW170817: Why faint
- Jet inclination and beaming < 5°
- * Collapsar (BH) \leftarrow Failed Supernovae, Long-GRB $\frac{1}{2}$

Yamazaki et al. (2022) ; Harikae et al. (2009, 2010) ; Nakamura et al. (2015)

```
c.f. Siegel et al. (2019) assumed: Super-Luminous SN Hypernova
```


Binary Pulsars : Expected Coalescence Time-Delay

General Relativity : $\tau_{C} = 9.83 \text{ Myr x } \left(\frac{P_{b}}{1-r}\right)^{-1} \times \left(\frac{m_{1}+r}{r}\right)^{-1}$

$$\frac{P_{\rm b}}{\rm hr}\right)^{8/3} \times \left(\frac{m_1 + m_2}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1 - e^2\right)^{7/2}$$

©NASA

BINARY PULSARS : Lorimer, Living Rev. Rel. 11(2008), 8; Beniamini+ (2019).

Coalescence Time Delay of NSM

Yamazaki, He, Kajino, Mathews, Famiano, Tang, Shi, ApJ 933 (2022), 112.

 $[Fe/H] = log(N_{Fe}/N_{H}) - log(N_{Fe}/N_{H})$

Cosmic & Galactic Chemical Evolution

Yamazaki, He, Kajino, Mathews, Famiano, Tang, Shi, ApJ 933 (2022), 112.

Neutrino Signal from Collapsars

Sumiyoshi, Yamada, & Suzuki ApJ **688** (2008)1176.

Model	Progenitor ^a	$M_{ m prog} \ (M_{\odot})$	$M_{\rm Fe} \ (M_{\odot})$	EOS	M_b^{\max} (M_{\odot})	$M_g^{ m mnx} \ (M_\odot)$	t _{BH} (s)
W40S	WW95	40	1.98	Shen	2.66	2.38	1.35
W40L	WW95	40	1.98	LS	2.10	1.99	0.57
T50S	TUN07	50	1.88	Shen	2.65	2.33	1.51
T50L	TUN07	50	1.88	LS	2,11	2.01	0.51
H40L	H95	40	1.88	LS	2,17	2.08	0.36

Galactic Diffuse (BG) SN-v Spectrum

+ Collective Oscillation

- JUNO: 20 kilo-ton Water Cherenkov Detector
- Hyper-K: 188 kilo-ton Gd-loaded Water Cherenkov Detector

r-, i-, s-processes in Collapsar Jet Nucleosynthesis

Zhenyu He, Kajino, Zhou et al., ApJ Lett (2024), in press.

Trans-uranium fissions \rightarrow neutrons

	$N_{\rm n} \left({\rm cm}^{-3} \right)$
<i>r</i> -process:	>10 ²⁰
<i>i</i> -process:	10^{12} ~ 10^{16}
s-process:	$10^{6} \sim 10^{10}$

Time scales

$$\tau_{(n,\gamma)} = \frac{1}{\rho Y_n N_A \langle \sigma v \rangle} < \tau_{dyn} = -\left(\frac{d \ln T_9}{dt}\right)^{-1}$$

'ogY

time(s) = 3.8×10²; T₉ = 0.056; $\rho(gcc)$ = 5.1×10⁻²; Y_n = 7.7×10⁻¹⁰; N_n(cm⁻³) = 2.4×10¹³

time(s) = 2.1×10^6 ; T₉ = 0.01; $\rho(gcc) = 6.3 \times 10^{-9}$; Y_n = 5.6×10^{-9} ; N_n(cm⁻³) = 2.1×10^{-7} o s-process 80 70 logY. N 60 -12 50 -16 40 50 60 90 100 110120 130 -20 Ν

Each contribution from *i*- & s-process to the *r*-only nucleiand Observational Signature(e.g. ¹⁵¹Eu)

Theoretical Formulae:

Atomic Number

$$Y_{s} = \int_{0}^{T} dt P_{4}^{sur}(t;T) \left[\lambda_{151}_{\mathrm{Sm}_\beta^{-}} \int_{0}^{t} d\tau f_{s}(\tau) P_{3}^{sur}(\tau;t) \right] \text{ where, } P_{k}^{sur}(\tau;t) = \exp\left[-\int_{\tau}^{t} dt' \Gamma_{k}^{des}(t') \right]$$

$$Y_{i} = \int_{0}^{T} dt_{3} P_{4}^{sur}(t_{3};T) \left\{ \lambda_{151}_{\mathrm{Sm}_\beta^{-}} \int_{0}^{t_{3}} dt_{2} \left[\lambda_{151}_{\mathrm{Pm}_\beta^{-}} \int_{0}^{t_{2}} dt_{1} \left(f_{i,2}(t_{1}) + \lambda_{151}_{\mathrm{Nd}_\beta^{-}} \int_{0}^{t_{1}} d\tau f_{i,2}(\tau) P_{1}^{sur}(\tau;t_{1}) \right) P_{2}^{sur}(t_{1};t_{2}) \right] P_{3}^{sur}(t_{2};t_{3}) \left\{ Y_{r} = \int_{0}^{T} dt_{3} P_{4}^{sur}(t_{3};T) \left\{ \lambda_{151}_{\mathrm{Sm}_\beta^{-}} \int_{0}^{t_{3}} dt_{2} \left[\lambda_{151}_{\mathrm{Pm}_\beta^{-}} \int_{0}^{t_{2}} dt_{1} \left(\lambda_{151}_{\mathrm{Nd}_\beta^{-}} \int_{0}^{t_{1}} d\tau f_{r}(\tau) P_{1}^{sur}(\tau;t_{1}) \right) P_{2}^{sur}(t_{1};t_{2}) \right] P_{3}^{sur}(t_{2};t_{3}) \right\}$$

v-processes in SNe/HNe

Ahmad, Ahn, Aoki, Aziz, Bhuyan, Chen, Guo, Hahn, Kajino, Kassim, Kim, Kubono, Kusakabe, Li, Li, Liu, Liu, Motobayashi, Pan, Park, Shi, Tang, Wang, Wen, Wu, Yan and Yusof, AAPPS Bulletin 31 (2021), 18.

Mo is a valuable element to study all nucleosynthetic processes in the solar-system.

v-p processes with Collective Oscillation

元素的起源与超越标准模型的新物理:中微子质量是关键

Origin of Heavy Elements & New Physics beyond the Standard Model: Neutrino mass takes the key.

Vacuum variation of the spectrum at JUNO, L = 52.5 km ve spectrum at JUNO, L = 52.5 km No osc. - 1+P₂₁ osc. - P_{ee} for NO - P_{ee} for NO - P_{ee} for NO - P_{ee} for NO

 Δm_{ω}

³ Δm_{21}^{2}

0.04

0.02

0.00

High density

Hierarchy, still unknown !

 $\Delta m_{12}^2 = 7.9 \times 10^{-5} \text{eV}^2$ $|\Delta m_{23}^2| = 2.4 \times 10^{-3} = (0.05 \text{ eV})^2$

・ JUNO将确定在<mark>真空条件</mark>下的中微子质量排序

 $sin^2 2\theta_{12}$

8 9 E_v [MeV]

JUNO will determine the neutrino mass hierarchy in vacuum.

 超新星中的中微子核合成可研究高密度环境中的中微子振荡,为中微子质 量排序提供新的约束

Supernova neutrino nucleosynthesis offers another opportunity to study the neutrino mass hierarchy in a high density environment.

Collective + MSW v Oscillations — Many Body Quantum Effect

Balantekin, Pehlivan & Kajino, PR D84 (2011), 065008; PR D90 (2014), 065011; PR D98 (2018), 083002 Duan, Fuller, Carlson & Qian, PRL 97 (2006), 241101; Fogli, Lisi, Marrone & Mirizzi, JCAP 12 (2007) 010; Sasaki, Kajino, Takiwaki, Hayakawa, Balantekin, Pehlivan, PR D96 (2017), 043013.

Origin of Life ?

Where was life (amino acid) born? Universal origin? Happen to be born on the Earth?

Amino acids on the Earth are all L-handed !

We are made of star dust.

Murchison Meteorite exhibits EXCESS of L-handed Amino Acids! NASA (2009, March 16)

http://tokyo.secret.jp/80s/come/amino-acid.html

アミノ酸のように、構成要素が同じでも鏡に映したような2 つの立体構造を取り得る物質を鏡像体(光学異性体)という。 同じアミノ酸でも右型と左型では性質が大きく変わり、右 型アミノ酸は体に害をなすことも多い。なぜ生命は左型ア ミノ酸を選んだのか、その理由は宇宙にある…とするのが Glavin氏らの考え。今後のさらなる研究が期待される

All connections bridging the double helix are occupied by ¹⁴N(1+).

Effect of ¹⁴N and Antineutrino Spin

Cross section for destroying spin-aligned ¹⁴N is less than for anti-aligned ¹⁴N by an order of magnitude (or two).

Excess of L-Chirality in Amino Acids !

Famiano, Boyd, Kajino, Onaka, et al. Astrobio. 10 (2010), 561; Int. J. Mol. Sci. 12 (2011), 3432; Symm. 6 (2014), 909; Astrobio. 18 (2018) 190; ApJ 856 (2018) 26; Sci. Rep. 8 (2018), 8833; Symm. 11 (2019) 23; Astrobio. 20 (2020), 964.

EW Coupling of Nuclei & Molecules under B-Field → Chiral Selection

Magnetic B-field of NS, BH, NSM orients ¹⁴N(s=1) via *nuclear* magnetic dipole moment.
 Meteoroid & amino acids are exposed to B-field & induced E-field.
 E-field shifts the electrons, so affects the *molecular* electric dipole moment.

Quantum molecular calculations for Valine

 \rightarrow These operate opposite for two chiralities.

Summary of Research Targets

<u>Quest No. 1</u> : Cosmological v in CMB fluctuations and BBN Li problem <u>Quest No. 2</u> : Solar v problem and Li problem in red-clump stars <u>Quest No. 3</u> : SN/HN/Collapsar v's in the origin of heavy elements, v-mass hierarchy/ordering effects at high-density

<u>Quest No. 4</u> : v-chirarity and cosmological origin of amino acids

Final Goal

Elucidate the roles of v-matter interactions in nucleosyntheses at high density from the Big-Bang to Supernova; Seek for the consistency with particle & nuclear physics.