Collective Neutrino Oscillation and Heavy-element Nucleosynthesis in Supernovae

wangxl@ihep.ac.cn

Institute of High Energy Physics, CAS

@the 4th CCAST workshop on the JUNO related theory and phenomenology: Astrophysical Neutrinos

中國科学院為能物路施施 Institute of High Energy Physics Chinese Academy of Sciences

Nucleosynthesis-heavy elements

Heavy elements (heavier than iron): the nucleosynthesis was a mystery for decades

Main processes:

Proton-rich process (p process)-~0.1%-1%;

neutron capture process:

s process (slow neutron capture) ~50%, up to ²¹⁰Bi; r process (rapid neutron capture) ~50%

Heavy element nucleosynthesis--multi-messenger astronomy

Heavy-element nucleosynthesis affected by neutrinos

- Neutron-rich side: r process
- Proton-rich side: ν process and ν p process
- Supernova neutrino driven wind (NDW):
 - fast, hot matter outflow from the PNS surface ~ few 10⁻⁵ -10⁻³ solar mass
 - NDW is determined by long-term neutrino cooling of the PNS
 - Neutrinos determine Y_e of the ejecta

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

electron fraction
$$Y_e = \frac{1}{1+n_n/n_p}$$
:
smaller Y_e, more neutron richness

Collective Neutrino Oscillation

- Many body:
 - a system of N neutrinos with discrete energies quantized in a box of volume V
 - two-flavor approximation

$$\begin{split} H &= \sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p} + \sum_{p,q} \mu_{pq} \vec{J}_{p} \cdot \vec{J}_{q} \\ &i \frac{d}{dt} |\Psi\rangle = H |\Psi\rangle \end{split}$$

Neutrino "polarization vectors" $\vec{P}_a = 2\langle \vec{J}_a \rangle$

• Mean field

$$H = \sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p} + \sum_{p,q} \mu_{pq} \left[\vec{J}_{p} \cdot \langle \vec{J}_{q} \rangle + \langle \vec{J}_{p} \rangle \cdot \vec{J}_{q} - \langle \vec{J}_{p} \rangle \cdot \langle \vec{J}_{q} \rangle \right]$$

$$\frac{d\vec{P}_q}{dt} = \omega_q \vec{B} \times \vec{P}_q + 2\sum_p \mu_{pq} \vec{P}_p \times \vec{P}_q$$

Xilu Wang

Collective oscillations in supernovae

Label	$E_{\nu,e}$	$E_{ar{ u},e}$	$E_{ u,x}$	$E_{\bar{\nu},x}$	$L_{ u,e}$	$L_{ar{ u},e}$	$L_{ u,x}$	Y_e
	[MeV]	[MeV]	[MeV]	[MeV]	[erg/s]	[erg/s]	[erg/s]	$(1 + \lambda_{\bar{\nu}_e}/\lambda_{\nu_e})^{-1}$
sym	10	10	20	20	9.091×10^{51}	9.091×10^{51}	1.818×10^{52}	0.634
asym2	10	12.5	20	20	9.091×10^{51}	1.136×10^{52}	1.818×10^{52}	0.504
asym2.1	10	13	20	20	9.091×10^{51}	1.182×10^{52}	1.818×10^{52}	0.482
asym3	10	14.28	20	20	9.091×10^{51}	1.298×10^{52}	1.818×10^{52}	0.427
asym4	10	16	20	20	9.091×10^{51}	1.455×10^{52}	1.818×10^{52}	0.366
sym-4nu	10, 11.11	10,11.11	16.67, 20	16.67, 20	9.591×10^{51}	9.591×10^{51}	1.667×10^{52}	0.634
asym2.1-4nu	10, 11.11	12.8, 14.3	16.67, 20	16.67,20	9.591×10^{51}	1.232×10^{52}	1.667×10^{52}	0.482

We initiate the oscillations at $r_i \simeq 100 \text{ km}$, where $\mu_i = 100$

SN neutrino-driven wind trajectories:

1) parameterized slow NDW trajectory adapted from Wanajo2011 with various entropy values;

2) parameterized high entropy and fast NDW trajectory adapted from Arcones+2007 as in Duan+2011.

nucleosynthesis calculations										
Simulation Models	Entropy S	Dynamic	cal timescale	Position at $\lesssim 10 \text{GK}$						
	$[k_B \text{ per nucleon}]$	$ au_1^a \; [{ m ms}]$	$ au_2^b \; [{ m ms}]$	$r_0 \; [{ m km}]$						
parameterization of	50 (default)	17.5	152	61.58						
-Wanajo2011	100	17.5	344	77.44						
(Wanajo et al. 2011)	150	17.5	500	86.41						
Duan2011 (Duan et al. 2011)	200	12.4	17.9	46.67						

Balantekin, B.,.., **Wang, X.,** 2024, ₅ ApJ *accepted*, arXiv: 2311.02562

Collective oscillations in supernovae

Balantekin, B.,.., **Wang, X.,** 2024, 6 ApJ *accepted*, arXiv: 2311.02562

r-process nucleosynthesis

- Rapid neutron-capture process (r process):
 - ✓ Create ~half of the nuclei heavier than iron
 - ✓ Occurs in neutron-rich environments, when neutron capture rates >> beta decay rates
 - ✓ Abundance peaks: A~82, A~130, A~196 (closed shell structures at N = 50, N = 82, and N = 126)

r-process nucleosynthesis

Arnould+2007, Sneden+2008

and N = 126)

r-process astrophysical sites: a mystery

Core collapse Supernovae? (e.g., Meyer+1992, Roberts+2012)

Magneto-rotational supernovae

(e.g., Reichart+2020, Nishimura+2017, Mosta+2018)

Collapsars (e.g., Siegel+2019, Miller+2019)

exotic supernovae (e.g., Fischer+2020) primordial black hole + neutron star (e.g., Fuller+2017) etc.

r-process astrophysical sites: supernovae?

Woosley, Janka 2005

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Neutrino physics shapes the

Electron fraction

$$Y_{e,f} \approx \frac{\lambda_{v_{en}}}{\lambda_{v_{en}} + \lambda_{\overline{v}_{ep}}} \approx \left(1 + \frac{L_{\overline{v}_{e}}}{L_{v_{e}}} \frac{\epsilon_{\overline{v}_{e}} - 2\Delta + 1.2\Delta^{2}/\epsilon_{\overline{v}_{e}}}{\epsilon_{v_{e}} + 2\Delta + 1.2\Delta^{2}/\epsilon_{v_{e}}}\right)^{-1}$$

Entropy per baryon

$$S_f \approx 235 C^{-1/6} L_{\overline{\nu}_e, 51}^{-1/6} \epsilon_{\overline{\nu}_e, \text{MeV}}^{-1/3} R_6^{-2/3} \left(\frac{M}{1.4 M_{\odot}} \right) \text{ for } S_f \gg S_N$$

 $S_{\rm tot} \approx S_f + S_N \approx S_f + \ln S_f + 10$

Qian, Woosley 1996

r-process astrophysical sites: supernovae?

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Does this work?

Yes

Meyer+1992, Woosley+1994

• No

Takahashi+1994, Witti+1994, Fuller, Meyer 1995, McLaughlin+1996, Qian & Woosley 1996, Hoffman+1997, Otsuki+2000, Thompson+2001, Terasawa+2002, Liebendorfer+2005, Wanajo 2006, Arcones+2007, Huedepohl+2010, Fischer+2010, Roberts, Reddy 2012, Martinez-Pinedo+2014, Chakraborty+ 2015, Goriely, Janka 2016, etc., etc.

r-process astrophysical sites: supernovae?

SN neutrino-driven wind:

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

a weak r-process (up to A~125) might be possible, with the ultimate extent of nucleosynthesis sensitively depends on neutrino physics (Fuller, Meyer 1995, Balantekin, Yuksel 2005, Johns+2020, Xiong+2020):

- Neutrinos determines the initial neutron richness (Y_e) for r process
- > During alpha particle formation: v_e reduce free neutrons --- alpha effect (Fuller+1995, McLaughlin+1996, Meyer+1998)
- ➢ Collective neutrino oscillations raise the effective energy of v_e and v
 _e, to readjust the Y_e value at early time (mostly free nucleons), and enhance the alpha effect (Duan+2011, Wu+2015, Pllumbi+2015, Just+2022...)
- Active-sterile conversions may also has an effect (McLaughlin+1999, Beun+2006, Wu+2014, Pllumbi+2015)

Existence of neutrinos: less robust r-process productions

Collective oscillations and r process

r process: neutrinos hinder the synthesis of heavier nuclei, and mainly affect the 3rd peak and beyond region;

for asym3 case with r-process nucleosynthesis barely reach the 3rd peak and beyond \rightarrow Biggest effect of the difference in SN NDW neutrino treatments on the r-process yields: move to weak r-process; many-body treatment has the biggest effect for normal mass hierarchy;

inverted mass hierarchy introduces bigger neutrino effect 4/29/24

Balantekin, B.,.., **Wang, X.,** 2024, ApJ *accepted*, arXiv: 2311.02562

ν p-process in supernovae

SN neutrino-driven wind:

Existence of neutrinos: enhance heavier elements productions in ν p process

Neutrinos for νp process :

- Determines the initial proton-rich status of NDW at T~10GK
- ➢ v̄_e captures on free protons give rise to a tiny amount of free neutrons, which are captured on the seed nuclei ⁵⁶Ni from the nuclear quasi-equilibrium (QSE), initiating the vp process (Frohlich+2006, Wanajo+2006, Pruet+2006)

 $v_e + n \rightleftharpoons p + e^ \bar{v}_e + p \rightleftharpoons n + e^+$

- Collective neutrino oscillations act to increase the $\bar{\nu}_e$ flux and create a more robust ν p process (Martinez-Pinedo+2011, Martinez-Pinedo+2017, Sasaki+2017, Balantekin 2018...)
- Fast flavor conversion could potentially increase mass loss rate and enhance the vp process (Xiong+2020)
- > Active-sterile neutrino flavor conversion could also help ν p process reach heavier elements between Zr and Cd (Wu+2014)

Collective oscillations and νp process

purple: no neutrino (nn)

cyan: no neutrino oscillation (nosc) blue: many-body calculation of oscillation (mb) orange: mean-field calculation of oscillation (mf) green: inverted mass hierarchy with mb pink: inverted mass hierarchy with mf

Xilu Wang

vp process: neutrinos boost the synthesis of heavier nuclei; The difference in SN NDW neutrino treatments brings a difference in yields: many-body treatment has the biggest effect for normal mass hierarchy; Inverted mass hierarchy introduces bigger neutrino effect

> Balantekin, B.,.., **Wang, X.,** 2024, 15 ApJ *accepted*, arXiv: 2311.02562

Collective oscillations and $\nu_{\rm p}$ process with various entropy

Initial proton-rich condition(νp process): with the increased initial entropy, s/k_B = 50, 100, 150, the ** collective neutrino oscillation push the synthesis of heavier nuclei, moving towards the neutron-rich

Special abundance yields for s/k_B >~150: light proton-rich nuclei + heavy neutron-rich nuclei

Balantekin, B.,.., Wang, X., 2024, ApJ *accepted*, arXiv: 2311.02562

Collective oscillations and ui process

Xilu Wang

vi process: new nucleosynthesis process and path

- Occur in a high entropy proton-rich environment with abundant neutrinos: supernovae, hypernovae
- Abundance yields: a mixture of lighter νp-process-type pattern and heavier i-process-like pattern, or a fully iprocess-like pattern at the highest entropies.
- The nucleosynthetic pathway is clearly distinct from an i process that occurs in mildly neutron-rich conditions

Balantekin, B.,.., **Wang, X.,** 2024, ApJ *accepted*, arXiv: 2311.02562

Collective oscillations and ν i process

➤ the abundance pattern of Wanajo2011 s/k = 50 case follows a typical vp process where p nuclei are dominantly produced, while the abundance patterns resulting from larger initial entropy values shift from a vp process at lower mass to a neutron-rich pattern for heavier nuclei (A ≥ 115 for s/k = 100, A ≥ 100 4/29/24 for s/k = 150, A ≥ 70 for Duan2011).

the vi process abundances are distinct from those of both the solar s process and r process, showing shifted neutron closed shell features and a distinctly higher lanthanide production than the s process.---New astrophysical sources for lanthanides

> Balantekin, B.,.., **Wang, X.,** 2024, ApJ *accepted*, arXiv: 2311.02562 ¹⁸

Summary

- Neutrinos play a key role in heavy-element nucleosynthesis in supernovae.
- However, the neutrino physics in candidate heavy-element nucleosynthesis events remains poorly understood. Different treatments of the collective neutrino oscillations can have a non-negligible impact on the the operation of the vp-process and r-process nucleosynthesis in supernovae.
- We found that the difference in the neutrino treatments has the largest impact on proton-rich nucleosynthesis, particularly at high entropies. Indeed, neutrino interactions, especially when neutrino oscillations are included, can nudge an initial vp process neutron rich, resulting in a unique combination of proton-rich low-mass nuclei as well as neutron-rich high-mass nuclei. We describe this novel neutrino-induced neutron capture process as the "vi process".
- Future JUNO neutrino measurement will provide important information for neutrino interactions to help us better understand the heavy-element nucleosynthesis in supernovae.

• Thanks for your attention. Questions?